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ABSTRACT
Crowdsourcing has become a popular paradigm in data curation,
annotation and evaluation for many artificial intelligence and in-
formation retrieval applications. Considerable efforts have gone
into devising effective quality control mechanisms that identify or
discourage cheat submissions in an attempt to improve the quality
of noisy crowd judgments. Besides purposeful cheating, there is
another source of noise that is often alluded to but insufficiently
studied: Cognitive biases.

This paper investigates the prevalence and effect size of a range
of common cognitive biases on a standard relevance judgment
task. Our experiments are based on three sizable publicly available
document collections and note significant detrimental effects on
annotation quality, system ranking and the performance of derived
rankers when task design does not account for such biases.
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1 INTRODUCTION
Over the past decade, crowdsourcing has been established as a
popular method for data collection, annotation and consolidation
as well as conducting user studies and evaluating system perfor-
mance. Instead of relying on local annotators contributing labor in
controlled lab environments, human intelligence tasks, so-called
HITs, are outsourced to a large anonymous crowd of workers. Aca-
demics and industrial practitioners alike praise this alternative par-
adigm’s cost-efficiency, quick response times and access to workers
of more diverse backgrounds than were commonly included in
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most lab-based studies. As a consequence of this distributed weakly
supervised approach, quality control remains a key challenge [17].

The literature commonly assumes low label quality to stem from
three possible reasons: (1) Unethical spammers submit imprecise
or even arbitrary labels in order to maximize their financial effi-
ciency [18] or due to external distractions. (2) Unqualified workers
are, despite their best efforts, unable to produce an acceptable an-
notation quality [15]. (3) Malicious workers purposefully aim to
undermine or influence the labelling effort [53]1.

While there certainly is strong evidence for all of the above rea-
sons, we argue that there is a fourth fundamental reason for noisy
label submissions. Cognitive biases are systematic patterns of de-
viation from norm or rationality in judgment, whereby inferences
about other people and situations may be drawn in an illogical
fashion [27]. Individuals create their own “subjective social reality”
from their perception of the input. An individual’s construction
of social reality, instead of the objective input, may dictate their
behaviour and lead to perceptual distortion, inaccurate judgment,
illogical interpretation, or irrationality [5]. Recognizing systematic
biases in data collection efforts is an important step towards coun-
tering their effect on those systems that are trained on the basis of
this data and is a key enabling factor for algorithmic fairness [25].

In a series of document relevance assessment experiments, this
paper strives to demonstrate that cognitive bias can indeed affect
crowdsourced labor and leads to significantly reduced result qual-
ity. This performance detriment is subsequently propagated into
system ranking robustness and machine-learned ranker efficacy.
The common strategies of controlling the crowd by means of quali-
fication tests, demographic filters, incentives, gold standards and
sophisticated worker models may not be enough to overcome this
new source of noise which is inherently caused by the HIT setup.
Instead, we would like to advocate careful task and study design
that takes into account cognitive biases to reduce the interface’s
susceptibility to this kind of label noise.

The remainder of this document is structured as follows: Sec-
tion 2 gives an overview of related work on crowdsourced data col-
lection and annotation, quality control, worker models and biases.
Section 3 follows up with an overview of frequently encountered
cognitive biases that can take effect in crowdsourced relevance
assessment tasks. Our experimental evluation in Section 4 strives
to answer three main research questions:

RQ1 What is the effect of cognitive biases on the quality of
crowdsourced relevance labels?

RQ2 To what degree do such effects influence retrieval system
evaluation?

RQ3 To which extent do cognitive biases influence the quality
of machine-learned rankers?

1While we do not believe that truly malicious workers are a frequently-encountered
class of workers, we include them in this overview for completeness.
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Finally, Section 5 closes with a summary of our findings as well as
an outlook on future directions of inquiry.

2 RELATEDWORK
Beginning with the Cranfield experiments [8], test collections have
been one of the pillars of IR system evaluation. Traditionally, such
collections are created by trained professionals in controlled lab
environments. In the IR community, the Text Retrieval Conference
(TREC) [50] supports one of the most widely known efforts to
creating such collections.

The emerging crowdsourcing paradigm [30] has inspired an
extensive line of research dedicated to using this new channel for
the creation and annotation of IR test collections. An early set of
experiments [1, 22, 38, 39] note that aggregated labels of multiple
untrained crowd workers can reach a quality comparable to that of
a single highly trained NIST assessor.

While this alternative labour market has been shown to be time
and cost efficient [18], researchers have less control over the cir-
cumstances under which relevance judgments are created. Tradi-
tionally, inaccurate judgments as well as spam submissions have
been a major challenge in the crowdsourcing process. As a con-
sequence, quality control is one of the most deeply researched
question in crowdsourcing [40] with solutions ranging from ag-
gregating the results of independent workers to the use of honey
pot questions [17, 28, 32]. Marshall et al. [41] highlight the impor-
tance of engaging HIT design on result quality while Yan et al. [57]
demonstrate the ability of active learning techniques to greatly im-
prove the worker-task allocation step. Bansal et al. [2] exploit this
notion for task selection in highly efficiency-driven crowdsourcing
scenarios.

Significant effort has been made into estimating worker relia-
bility based on various behavioural and demographic traits. Tang
and Lease [48] introduce a semi-supervised method for reliability
estimation based both on labeled as well as unlabeled examples.
Kazai et al. [36, 37] organize workers in 5 different classes and
study their respective judgment reliability and behaviour. Based
on social media profiles, Difallah et al. [14] model worker topic
affinities, enabling them to assign tasks to workers with matching
interest, resulting in significantly improved result quality. How-
ever, as the authors further note [13], it can be hard to have the
necessary degree of control over the ephemeral crowd workforce in
applied crowdsourcing scenarios that involve online platforms such
as Amazon Mechanical Turk and CrowdFlower. Karger et al. [34]
propose a joint model for iteratively learning worker reliability
and aggregating votes by means of approximate belief propagation.
Recently, Davtyan et al. [11] show the use of inter-document sim-
ilarities for the goal of label aggregation. They intuit that, given
the same query, similar documents should show similar relevance
labels. Blanco et al. [4] study the robustness of crowdsourced rele-
vance assessments over time, finding that repeated labeling efforts
produce stable results even as longer periods of time elapse.

Another prominent source of evidence can be found in the
analysis of systematic judgment behaviour. Following Dawid and
Skene [12], who investigate disagreements between diagnoses posed
by multiple individual medical doctors, there have been several suc-
cessful attempts at harnessing similar methods for crowdsourcing

quality assurance [29, 51]. In this way, reliable workers that make
occasional mistakes can be accurately separated from spammers
that select answers at random or follow other, more sophisticated,
cheating strategies.

While some examples were known previously, the systematic
study of cognitive biaseswas first established by Tversky and Kahne-
mann [49] and has since seen many realizations in decision theory
and advertisement. Recently, there have been a number of studies
tying observed user behavior in Web search [55] and general in-
formation systems [21] to cognitive biases. The body of existing
crowdsourcing work acknowledges the importance of task and in-
terface design [33, 35, 46], as well as execution parameters such as
batch sizes [52]. There are several articles that mention presenta-
tion and order effects [7, 16] or irrational aesthetically-motivated
annotator behavior [42]. In addition, a number of scholars, without
a dedicated study of the reason for biased crowd labor, present
potential solutions in the form of tailored incentive schemes [20],
Bayesian bias mitigation [54] or active learning [60].

While several pieces of related work have alluded to the impact
of cognitive biases on crowdsourced data collection and annotation
efforts, to the best of our knowledge, there exists no dedicated study
that systematically describes and quantifies such effects. This paper
aims to close this gap in the literature.

3 COGNITIVE BIASES
This section begins with a brief description of our experimental
corpora as well as an unbiased baseline setup for crowdsourced
relevance label collection. Subsequently, we propose four experi-
mental crowdsourcing conditions in which a range of prominent
cognitive biases are likely to occur.

3.1 Datasets
Our experiments are based on three well-known document collec-
tions that were selected to span different domains, document types
and collection sizes. As an example of a large-scale Web collection,
we include the widely-used ClueWeb12 corpus2, containing approx-
imately 733M Websites. Corresponding test topics are taken from
the 2013 and 2014 editions of the TREC Web Track [9, 10]. The TIP-
STER collection [26] compiles newswire documents from a number
of major outlets across the years 1987 – 1992 and represents an
example of a traditional pre-Web retrieval task on a smaller set of
individually well-curated documents. We include the corresponding
4 years of TREC adhoc topics (1992 – 1995) into our experiments. Fi-
nally, the TREC Clinical Decision Support track (CDS) investigates
patient-centric literature retrieval. The documents are a subset of
the PubMed repository of bio-medical journal articles. While the
previous collections contained rather accessible information from
the Web and news domains, this corpus heavily relies on technical
jargon and significantly higher reading levels. Queries in this set-
ting stem from the highly condensed patient summaries of all three
editions (2014 – 2016) of TREC CDS [43, 44, 47]. Table 1 gives an
overview of key statistics such as the number of documents, topics
and official NIST-provided relevance judgments.

2http://lemurproject.org/clueweb12/
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Table 1: Details of the three experimental corpora. For each
corpus, we report the domain of origin, its size, the number
of topics and the amount of official NIST-provided relevance
judgments.

Corpus Domain # Documents # Topics # Qrels

ClueWeb12 Web 733M 100 91k
TREC CDS Medical 1.3M 90 114k
TIPSTER 1–3 Newswire 1M 200 336k

Figure 1: The baseline annotation interface presents work-
ers with a brief topic description as well as document title
and content and asks for binary relevance labels.

3.2 Baseline Setup
Let us consider a standard document relevance assessment task
in which workers are first primed by a set of relevance guidelines
before being presented with a brief topic description and a struc-
tured document representation. We include only the document title
and main text content, with all remaining meta information hid-
den in this setup. Relevance assessment is made in binary fashion,
distinguishing between relevant and non-relevant pairs of topics
and documents. In order to prevent further sequence effects and
presentation biases, we publish tasks in batches of one. Figure 1
gives an example of the judgment interface as seen by our workers.
In an initial set of experiments, this baseline shows an encouraging
individual accuracy of approximately 80% at matching NIST labels.
In the further course of this document, we will discuss a number
of interface variants used to demonstrate the effect of cognitive
biases. To ensure legibility of the interface screenshots, here we
truncate the, sometimes lengthy, document content field. This was
exclusively done in the screenshots for this paper. Workers were
always presented with the full document content.

3.3 Ambiguity Effect
The Ambiguity Effect occurs when missing information makes de-
cisions appear more difficult and consequently less attractive [19].
While our baseline scenario includes only the title and main content

fields, we further include a number of additional properties for each
document: the document’s age in days calculated from its publi-
cation date, its length in number of words and a random number
sampled from the interval [0, 5] that we dub the “k-Index” and the
origin or meaning of which is never explained to the workers. It
is intuitive that neither of these properties should have a strong
implication on a document’s relevance towards a given topic. We
confirm this assumption by means of a Pearson product-moment
correlation test. The only property that shows even mild correlation
with the NIST relevance label is document length3.

We randomly sample 50 relevant and 50 non-relevant pairs from
each of our three collections. To test for traces of the Ambiguity
Effect, we compare two conditions: The baseline setup in which
no additional fields are shown, and an alternative including the
additional fields. For 50% of the pairs in this second group, the
values of all additional fields are present. For the remainder, we
declare them as “unknown”. The document title and content are
always available.

In the baseline setting, the observed likelihood of a worker as-
signing a label of ’relevant’ is 58%. When showing additional fields
with complete information, we observe a comparable likelihood of
relevancy of 59%. When, however, these additional values are miss-
ing, the likelihood of a positive vote plummets to 44%, irrespective
of true document relevance. Despite the fact that the potentially
missing information has, at best, a weak connection to document
relevance, and even though it can in some cases be inferred (i.e.,
document length is observable from the displayed main content.),
the missing values create an illusion of uncertainty and lets workers
doubt the quality of a document.

Let us, in a second experiment assume a gradual occurrence of
missing data that is more representative of real-life missing-value
scenarios. Instead of hiding either all or none of the additional
values per document, we are introducing a masking probability
pm ∈ [0, 1] that is applied to each of the additional fields indepen-
dently, allowing some values to be missing while others are present.
Figure 2 shows the judgment interface for this setup.

As we plot the overall likelihood of document relevance in re-
sponse to pm (Figure 3), we note a considerable decline in the
likelihood of relevance up to pm ≈ 0.6. At this point the likeli-
hood of relevance stabilizes and eventually partially recovers. We
believe that this final trend is due to training effects under which
workers learn that hardly any of the documents exhibit complete
values, making the perceived uncertainty appear less severe. It is
furthermore interesting to note that at pm = 1.0 when none of the
additional fields are ever shown, there is still a significantly lower
likelihood of arbitrary document relevance than at pm = 0.0, indi-
cating that even uniformly missing information may make workers
more hesitant to assign positive labels.

In summary, we see a clear negative impact of showing missing
values to workers, even if these missing properties were uninfor-
mative to start with. This observation should serve as a word of
caution when designing crowdsourcing experiments. In settings
that can experience missing values it may be beneficial to omit a
property altogether.

3Age: r = −0.16, Length: r = 0.23, K-Index: r = −0.07



Figure 2: The ambiguity interface additionally presents
workers with three uninformative meta attributes. Some of
these attributes are declared “unknown” to create the im-
pression of incomplete information.

Figure 3: The masking probability pm controls the amount
of missing field values. The overall likelihood of relevance
drops as pm approaches 0.6. After this point it stabilizes and
eventually recovers.

In the further course of this document, when referring to the
Ambiguity Effect, we will use the above fields and individually
declare their values unknown with pm = 0.5.

3.4 Anchoring
Anchoring or Focalism describes situations in which workers dis-
proportionately focus on one piece of information (often the first
one presented to them) even as additional contradicting evidence
becomes apparent [49]. In organic crowdsourcing experiments such
effects are likely to take place as information is revealed to the user
in subsequent stages. We simulate this situation by structuring the
judgment process in two phases. At first, the worker is presented

Figure 4: The anchoring interface presents document-
related information in two steps, beginning with uninfor-
mative meta data.

Table 2: A direct comparison of two-stage and single-stage
crowdsourcing processes demonstrates significantly lower
overall label accuracy due to Anchoring when initially pre-
senting uninformative data.

Stage-1 Stage-2 Single-Stage

Relevant 0.42 0.43 0.54
Non-Relevant 0.58 0.57 0.46
Accuracy 0.49 0.67 0.81

exclusively with the topic description and the three additional in-
formation fields described in the previous section (document age,
document length and a randomnumber introduced as the “k-Index”).
Note that this time all information is present at all times and there
are no missing values. The worker is asked to assign a relevance
label solely based on these three properties which, as we showed
earlier have no systematic association with the true relevance label.
In the second stage of the experiment we additionally reveal the doc-
ument title and content to the worker and ask them to update their
relevance vote. Figure 4 shows an example of the corresponding
judgment interface.

Let us now consider an experiment under which we randomly
draw 50 relevant and 50 non-relevant pairs from each of the three
corpora and request crowd labels via the process described above.
In a separate control group we request labels for the same data in
a single-stage fashion, presenting the same information at once,
rather than sequentially.

In expectation, a rational worker would have to blindly guess
at stage one of the judgment process and would be correct 50% of
the time4. In the next stage, when document title and content are
revealed, this same rational worker would be expected to disagree
with their earlier vote in 50% of the cases. Instead of such unbiased
behavior, Table 2 notes significant evidence of anchoring.

4A highly informed worker that is privy to the mild systematic connection between
document length/age and relevancy could do somewhat better. Such effects would be
very subtle and are disregarded here.



Figure 5: The bandwagon interface additionally presents
workers with the historic distribution of relevance labels as-
signed to this topic-document pair by their peers.

While the single-stage annotators perform at the same level of
accuracy of approximately 80% that was earlier observed in the
baseline setting, workers under the two-stage condition updated
their prior arbitrary beliefs too infrequently, resulting in a consid-
erably reduced stage-2 accuracy. To exclude outside experimental
effects, we conduct the same experiment in inverse temporal order,
i.e., first revealing title and content and subsequently showing the
additional fields. In this experimental condition, workers show the
same accuracy rates as in the single-stage case, suggesting that the
detrimental effect was indeed induced by anchoring on conclusions
drawn from uninformative data.

3.5 Bandwagon Effect
The Bandwagon Effect (sometimes referred to as Groupthink or
Herd Behavior) occurs when workers forego their own reasoning
in favor of following an existing group’s behavior [3]. In crowd-
sourced relevance assessment tasks, we can easily simulate this
effect by disclosing to workers how their peers judged a given topic-
document pair. The assessment interface is identical to the baseline
with the only exception of binary relevance choices additionally
displaying the number of previous users who made this choice for
this pair. A screenshot of the resulting interface can be found in
Figure 5.

In our first experiment, instead of using actual historic votes,
we show the user artificial statistics according to which n out of
10 previous users judged this pair relevant. From each of our three
collections, we randomly draw 50 relevant and 50 non-relevant
pairs and have crowd workers judge them once more. Figure 6
plots the likelihood of workers assigning a label of ’relevant’ to an
arbitrary pair as n ranges from 0 to 10.

We can observe a balanced tendency of workers following per-
ceived herd behavior. Irrespective of the true relevance label, topic-
document pairs were more likely to be judged relevant when we
claim a high number of prior votes indicating relevance. Similarly,
although somewhat less strongly expressed, we note the probability
of relevance decreasing as the perceived prior consensus becomes

Figure 6: The likelihood of relevancemonotonically follows
the number of artificially reported previous positive judg-
ments irrespective of true document relevance.

Figure 7: The likelihood of agreeing with an existing major-
ity gently increases when votes are hidden from workers
but sharply rises with the amount of existing votes when
revealed prior to assessment.

more negative. In the center of the plot, for choices of n between
4-6, we do not find considerable bias in either direction.

While one might argue that such strong Bandwagon Effects
are artificial and may not often occur unintentionally in organic
crowdsourcing efforts, let us consider a second experiment. This
time, we do not introduce false information but, instead, truthfully
disclose the prior vote distribution. While the baseline experiment
shows a good accuracy of 80%, the same setup significantly drops
in accuracy (to a level of 76%) when disclosing prior vote statistics.
Further analysis suggests that this error is introduced by early
incorrect votes that are subsequently followed by other workers.

This assumption is confirmed when we inspect the distribution
of likelihood of workers disagreeing with existing majority votes.
Figure 7 plots the observed likelihood of disagreement with cur-
rent majority vote5. While consensus is generally high, we note
that in the baseline case, where vote distributions are not shown,
agreement ratios only gently rise, reflecting the general degree
of controversy in each pair while, for the exact same pairs, they
sharply increase in case of disclosed vote statistics.

To summarize, the Bandwagon Effect shows clear expression in
crowdsourced relevance assessment efforts both when artificially

5Ties are not broken in this analysis and are simply excluded from likelihood
computation.



Figure 8: The decoy interface asks workers to assign relative
preference labels for three documents.

primed but also when merely revealing true previous votes. In the
further course of this document we will only consider this second,
more realistic realization of the Bandwagon Effect.

3.6 Decoy Effect
The Decoy Effect (sometimes also referred to as the Asymmetric
Dominance Effect) occurs when workers’ preference between op-
tions A and B changes in favor of option B when an option C is
presented, which is similar but clearly inferior to option B [31]. It
is a well-known and frequently exploited bias studied in marketing
and advertising where decoy products are introduced to seemingly
increase the actual product’s viability in comparison to actual mar-
ket alternatives. We simulate this situation by asking workers rank
(“most relevant”, “second-most relevant”, “least relevant”) three doc-
uments with respect to the same topic. A screenshot of the resulting
interface can be found in Figure 8.

From each of the three corpora, we randomly draw 50 relevant
topic-document pairs that will serve as our choice A. For each such
pair, we draw a non-relevant document B and additionally select
an additional document C that is similar to B (cos(B,C) ≥ 0.7) but
less relevant (BM25(B) > BM25(C)). Finally, for the same topic, we
draw another non-relevant document D that shares no considerable
similarity with either A or B (max(cos(A,D), cos(B,D)) ≤ 0.3). If,
for a given topic these requirements cannot be fulfilled, we reject
the current pair and draw another one until our pool of 50 unique
tuples ⟨A,B,C,D⟩ per corpus is filled.

We now compare two experimental conditions: First, we present
workers with options A, B, C, a setup in which we expect to see
some expression of the Decoy Effect. In our control group, workers
see options A,B,D, where no such effect should occur. The relative
ordering of options A, B, C, and D is chosen randomly for every task
and does not reflect relevance in any way. Figure 9 plots the various
likelihoods of being assigned a given relevance rank across op-
tions and experimental conditions. As expected, the single relevant
option, A, shows the highest probability of receiving the “most rel-
evant” rank in both settings. If we, however, compare the observed
likelihood of option B being “most relevant”, we note a considerable
increase in likelihood when displaying A and B alongside decoy

Figure 9: The observed likelihood of assigning higher rele-
vance ranks to non-relevant option B increases when a sim-
ilar but less relevant option C is presented.

option C (p(B) = 0.35) rather than the unrelated D (p(B) = 0.12).
This trend shows that there is a considerable risk of suffering from
Decoy Effects in real-world crowdsourcing scenarios when multiple
options are shown for relative ranking. This becomes especially
relevant since several studies (e.g., [6, 58, 59]) find human assessors
to be more reliable when assigning relative preferences rather than
absolute relevance levels to documents.

For the remainder of this paper, to ensure consistency with the
labels collected under the other biased processes, we translate pref-
erence ranks into binary relevance labels. To do so, we use the fact
that in each tuple ⟨A,B,C,D⟩, only a single document A is in fact
relevant. In consequence, the rank “most relevant” will be assigned
a relevant vote and all remaining ones receive a non-relevance vote.

4 EXPERIMENTS
Building on the initial evidence presented in the previous section,
we conduct a series of experiments in which the effect of cognitive
biases is quantified in terms of label accuracy, retrieval system
evaluation and machine-learned ranker effectiveness.

4.1 Label Accuracy
Let us begin by establishing a side-by-side quality comparison of
relevance labels contributed by biased and unbiased crowd labeling
processes. In this section, we measure the accuracy of the various
crowdsourcing methods at reproducing NIST expert judgments. To
this end, we consider 6 crowdsourced relevance label collection
processes:

AE
Crowd labels obtained under influence of the Ambiguity
Effect with likelihood pm of hiding additional uninformative
fields of 0.5.

A
Crowd labels obtained under influence of Anchoring when
using a two-stage judging process.

BE
Crowd labels obtained under potential influence of the Band-
wagon Effect by revealing the true distribution of previous
workers’ votes.

DE
Crowd labels obtained under influence of the Decoy Effect



Table 3: Accuracy of crowdsourced relevance votes at match-
ing the existing NIST expert labels.

Collection Year BC AE A BE DE UC

CW’12 2013 0.67* 0.68* 0.65* 0.70* 0.69* 0.83
2014 0.77* 0.66* 0.63* 0.75* 0.67* 0.85

CDS

2014 0.58* 0.65* 0.52* 0.70 0.66* 0.71
2015 0.75 0.71* 0.71* 0.60* 0.68* 0.79
2016 0.65 0.58* 0.59* 0.67 0.65 0.68

TIPSTER
1992 0.78 0.78 0.66* 0.65* 0.67* 0.82
1993 0.69* 0.68* 0.61* 0.71* 0.79 0.84
1994 0.66* 0.78 0.59* 0.78 0.81 0.81
1995 0.68* 0.80 0.68* 0.60* 0.77 0.82

Overall 0.69* 0.70* 0.63* 0.69* 0.71* 0.79

when consdering only the single most highly ranked docu-
ment relevant.

BC
General biased crowd labels obtained via aggregation of all
previously listed processes.

UC
A baseline crowdsourcing process designed to trigger none
of the previously discussed biases.

We randomly sample 500 topic-document pairs from the NIST
qrels of each TREC task edition (4500 pairs in total). For each of these
pairs we collect a crowd label using the five organic crowdsourcing
processes (AE, A, BE, DE, UC), giving our experimental dataset
for this stage an overall volume of 9 tasks × 5 crowd processes
× 500 labels × 3 workers = 135k labels. BC, finally, is merely the
aggregation of all biased crowd collections (AE, A, BE, DE) in which
final labels are determined via uniform majority voting with coin
tosses as tie breaker.

All labels were collected on the Amazon Mechanical Turk crowd-
sourcing platform6 at a rate of 0.03 US$ per label. Table 3 lists
per-task and overall accuracies for the various crowdsourcing pro-
cesses. Ground truth labels are given by NIST expert annotations.
Statistically significant performance losses between biased crowd
processes and the bias-free reference process (UC) are indicated by
an asterisk. Statistical significance is determined using a Wilcoxon
signed-rank test at α < 0.05-level.

We note that, while news and Web topics can be reliably an-
swered by UC crowd judges, the biomedical topics seem to be
considerably more difficult to solve due to the high degree of med-
ical jargon as well as the required domain-specific training. An
exception to this general trend is the 2015 edition of the CDS track,
the topics of which seem to be easier to solve. This observation has
been previously made by CDS participants [23]. Despite some local
variance, we note significant and substantial overall performance
losses when considering biased crowdsourcing processes. Most
notably, Anchoring shows dramatic effects with relative accuracy

6https://www.mturk.com/

Table 4: Historic runs submitted to TREC tracks are ranked
by descending nDCG according to the various crowdsourced
label collection processes. Spearman’s ρ describes their cor-
relation to the original NIST ranking.

Collection Year # runs # qrels ρBC ρAE ρA ρBE ρDE ρUC

CW’12 2013 61 47k 0.71 0.76 0.69 0.76 0.73 0.85
2014 30 44k 0.84 0.71 0.64 0.83 0.74 0.93

CDS

2014 102 38k 0.61 0.70 0.53 0.79 0.70 0.79
2015 178 38k 0.84 0.75 0.72 0.67 0.69 0.88
2016 115 38k 0.71 0.65 0.61 0.70 0.66 0.74

TIPSTER
1993 38 63k 0.78 0.70 0.63 0.73 0.82 0.90
1994 40 97k 0.73 0.81 0.64 0.82 0.86 0.89
1995 39 87k 0.70 0.87 0.70 0.65 0.84 0.86

losses of up to 28%. In case of the already difficult CDS topics, for ex-
ample, this lowers worker accuracy to a level that barely surpasses
random guessing.

With respect to RQ1, we conclude that all investigated forms of
cognitive bias show significant negative impact on the quality of
crowdsourced relevance assessments.

4.2 Consequences for System Evaluation
Aside from the previously studied effect of cognitive biases on the
immediate quality of crowdsourced relevance assessments, it is
conceivable that such quality differences should influence retrieval
system evaluation. To test for this hypothesis, we use the relevance
judgments produced by the various biased crowdsourcing processes
discussed earlier to rank a wide range of retrieval systems accord-
ing to their retrieval performance. In a second step, we compare
these system rankings to the one induced by the labels that were
obtained from NIST experts (NE) and measure degree to which the
relative ordering of retrieval systems is perturbed by cognitive label
collection biases.

For this comparison, we consider all historic submissions to the
relevant TREC adhoc, Web and CDS tracks and rank them in terms
of nDCG. We can now compute the Spearman rank correlation
coefficient ρ between system orderings induced by the various
crowdsourced label collections and the ground truth NIST ordering.
Values of ρ close to 17 show robust rankings in which no major dif-
ferences to the original NIST ranking can be found. The further ρ’s
value differs from 1, the stronger the ranking perturbation, leading
to faulty relative performance comparisons between retrieval sys-
tems. As ρ approaches 0, there is no systematic association between
original and crowdsourced rankings any more.

Table 4 lists, for all three corpora and their respective editions,
the number of historic runs, the amount of available NIST relevance
assessments and the resulting values of ρ. Note that we were unable
to obtain TREC-1 results from the NIST archive and therefore only
include the 1993–1995 editions.

We notice that unbiased crowd labels (UC) show only minor
perturbations from the original NIST rankings and generally yield
robust system orderings. Again, for the 2014 and 2016 editions

7Values close to −1 are similarly desirable as they would reflect a near-perfect inverse
system ranking that would, again, allow correct interpretation. In practice, however,
we do not expect to observe such dramatic perturbations.
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of CDS, the previously noted low crowd accuracy translates into
somewhat reduced ranking coherency. As we turn towards the
various biased crowd processes, we can observe varying degrees of
perturbation, reaching, in the most severe case, a ρ of 0.53, signi-
fying considerably different system rankings based on NIST and
biased crowd judges. The various bias types appear to equally affect
ranking robustness with Anchoring, again being a negative outlier.

With respect to RQ2, we note considerable differences in rel-
ative system orderings when using biased crowdsourcing labels
as ground truth relevance indicators. In contrast, unbiased crowd-
sourced labels result in rankings that are largely identical to original
NIST rankings.

4.3 Consequences for Derived Systems
In the previous sections, we discussed the impact of cognitive biases
on relevance label accuracy as well as its propagated influence on
retrieval system evaluation. In this final experimentation section,
we are interested in the impact that such biases have on the quality
of derived systems such as machine-learned rankers. To this end,
we use the collected relevance assessments to train a range of data-
driven rankers and compare three experimental conditions: Rankers
based on biased crowds (BC), rankers based on unbiased crowds
(UC) and rankers based on NIST expert labels (NE). As before, the
biased condition is subdivided into its four constituent biases.

In each condition, we train a LambdaMART classifier [56] using a
range of standard learning-to-rank features8 and a neural network-
based ranker [24]. As an additional point of reference, we include a
static BM25 retrieval model [45] that does not require any training
data9. The available topics are split into 10 non-overlapping folds
and each model is trained on 9 varying folds and evaluated on the
remaining one in cross-validation fashion. Performance evaluation
is always based on the NIST-provided expert judgments. Table 5
shows the results of this experiment in terms of nDCG. Statistically
significant differences between a biased run and its corresponding
UC counterpart are indicated by an asterisk. Statistical significance
is determined using a Wilcoxon signed-rank test at α < 0.05-level.

The general trend is for both machine-learned systems to out-
perform simple BM25 rankers trained on NIST or UC labels. In this
comparison LambdaMART is in most cases superior to DRMM. Sys-
tems trained on biased crowd labels, however, deteriorate rapidly in
performance and often reach a level of ranking quality that is below
that of non-parametric exact-matchingmodels such as BM25. Again,
this tendency is observed to be most severe for labels produced
under the influence of Anchoring or the Bandwagon Effect.

With respect to RQ3, we find that cognitive biases as modelled
in this paper have a significant negative effect on the performance
of derived systems such as machine-learned rankers.

5 CONCLUSION
This paper investigates the effect of cognitive biases on the quality
of submissions to standard document relevance assessment tasks.

8We use all non-proprietary features (1–130) described at https://www.microsoft.com/
en-us/research/project/mslr/. For newswire and medical domains, we omit Web-based
features such as PageRank.
9While one can use training data to tune the model’s parameters, we refrain from
doing so and use robust common choices of k1 = 1.5 and b = 0.75 throughout all
experiments.

Table 5: Retrieval performance of rankers trained on biased
(BC) or unbiased crowd data (UC) as well as NIST expert la-
bels (NE) in terms of nDCG. BC aggregates the various indi-
vidual bias types.

Collection Model BC AE A BE DE UC NE

CW’12
LambdaMART 0.27 0.25* 0.22* 0.25* 0.23* 0.28 0.34
DRMM 0.22* 0.25* 0.24* 0.20* 0.24* 0.30 0.32
BM25 0.24 0.24 0.24 0.24 0.24 0.24 0.24

CDS
LambdaMART 0.18* 0.21* 0.16* 0.23 0.22 0.24 0.32
DRMM 0.15* 0.19 0.17* 0.15* 0.18 0.21 0.24
BM25 0.21 0.21 0.21 0.21 0.21 0.21 0.21

TIPSTER
LambdaMART 0.24* 0.26* 0.21* 0.28* 0.26* 0.32 0.38
DRMM 0.20* 0.27 0.22* 0.23* 0.24* 0.28 0.32
BM25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

We concentrate on four common types of bias and, in a series of
experiments on well-known TREC research corpora, demonstrate
the significant detrimental influence that biased label collection
can have on label quality, retrieval system evaluation and ranker
training. Especially the more subtle forms of bias, e.g., the Band-
wagon or Decoy effects can occur unintentionally in crowdsourcing
experiment protocols and should be carefully checked for in order
to avoid label degradation.

There are several exciting direction for future inquiry. In this
paper, we focus on a range of newly conducted crowdsourcing ini-
tiatives that are instrumented to induce cognitive bias and demon-
strate its effect on result quality. In the future, instead, it would
be interesting to devise formal tests to analyze existing historic
labeling efforts such as done in the course of the TREC Crowd-
sourcing track in terms of their susceptibility to bias. While this
paper concentrates on crowd judges, a class of human laborers that
has previously been shown to be prone to distraction and noisy
submissions, there is no reason why test subjects in controlled lab
environments should not suffer from the same effects. In the future,
we suggest further confirming this assumption with a comparable
lab study.
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