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Abstract

This paper describes Brown University’s submission to the TREC 2019 Deep
Learning track. We followed a 2-phase method for producing a ranking of passages
for a given input query: In the the first phase, the user’s query is expanded by
appending 3 queries generated by a transformer model which was trained to
rephrase an input query into semantically similar queries. The expanded query can
exhibit greater similarity in surface form and vocabulary overlap with the passages
of interest and can therefore serve as enriched input to any downstream information
retrieval method. In the second phase, we use a BERT-based model pre-trained
for language modeling but fine-tuned for query - document relevance prediction
to compute relevance scores for a set of 1000 candidate passages per query and
subsequently obtain a ranking of passages by sorting them based on the predicted
relevance scores.

1 Introduction

In recent years, deep learning methods have become the standard for solving information retrieval
tasks. These methods can effectively map words and phrases to vector representations. These
representations can facilitate better matching between phrases that have similar meanings [4]. Phrases
closer in meaning will be represented closer to each other in a vector space. In information retrieval,
many ways to develop relevance scores have been used, such as counting word overlap between
query and document. Recently, more complex machine learning models use human-verified datasets
to train models to assign similarity scores used for rankings. Applying deep learning to Natural
Language Processing problems has given rise to new approaches that can better represent a sentence’s
meaning using neural networks. For instance, Long Short Term Memory models [2] with an attention
mechanism allow for word relationships to be constructed between different sentences and thus for
words to be better placed in context, rather than just by examining the words closest to them. A
breakthrough development in Natural Language Processing, the BERT architecture [1], extracts word
and consequently sentence representations by masking words throughout a sentence and predicting the
omitted words, using self-attention to encode the entire sentence at once. Within the BERT framework,
the model can also be trained to predict the next sentence out of a few choices, given an input sentence.

Even with these advances, deep learning methods still struggle with some inherent difficulties in IR
tasks. These challenges result from discrepancies in query and document vocabulary, limited size of
data used for training, and weaknesses in a given human-generated query. In an effort to mitigate
these effects, our team’s approach was inspired by an existing method, doc2query [7], which for
a given input document uses a transformer model architecture to predict plausible queries leading
to that document. Although it was shown that the expanded documents indeed allowed improved
retrieval performance by a downstream ranking model, this approach requires that all documents in
the collection of interest are first “pre-indexed” by feeding them as input to the transformer model,
which is not practical. Instead, we propose a query2query method that takes a given query as input
and generates several queries similar in meaning. The hope is to create a more powerful query by
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augmenting the generated queries and the given query into a single representation, which is used
to match a desired passage. To complete our architecture, we then feed the expanded queries to a
pre-trained BERT model which can predict similarity scores between queries and documents and
produce a final ranking. The goal of our approach is to reduce surface form “noise” within a certain
query by generating other queries that ask for the same information, but in different ways. By having
different representations of the “same” query, we hope to create more holistic queries and as a result
obtain an end-to-end method which can generalize better and potentially reduce the problems which
modern IR faces.

2 Methodology

2.1 Neural query expansion

The data used to train and evaluate our model originated from the publicly available MS MARCO
dataset [5]. In the frames of the TREC Deep Learning Track competition, the training dataset
included 532,761 query - passage pairs labeled as positive for relevance (qrels file). Although the
vast majority of passages (97.4%) are matched only with a single query, for the remaining 2.6% more
than one relevant queries exist (see Table 1). These are enough to generate 21,582 unique pairs of
related queries.

We subsequently regarded the first query of each such pair as a source sentence and the second
query as a target sentence for a neural machine translation task. Essentially, this task can be seen as
equivalent to paraphrasing an input query into an equivalent query. For this purpose, we trained a
transformer model [9] using the OpenNMT [3] implementation, following a similar pipeline as in [7].

To expand the original (source) query, we can then append to the end of the original query the
top 3 beams (in terms of estimated log-likelihood) used for the beam search when generating the
query2query model’s output. The result is an augmented query which consists of 4 approximately
equivalent wordings of the same query. Table 2 shows several examples were the model rephrased
the input query into equivalent formulations.

We found that the quality of the “equivalent query pairs” used for training the query2query model is
of decisive importance for generating semantically similar queries. Despite its vastly superior size,
using a dataset of pairs of queries which yielded the same passages from the top1000 data file of
the competition (where each query is matched with an unranked set of 1000 potentially relevant
candidate passages, and therefore each passage is matched with several queries) often resulted in
irrelevant queries being generated by the query2query model, which could easily confound subsequent
information retrieval.

2.2 Re-ranking with BERT

After expanded queries have been obtained, one can in principle use them as input to any IR method
of choice. Due to its proven effectiveness both in other Natural Language Processing tasks as well
as document retrieval in particular [6], we opted for using a BERT model, which has been first
pre-trained as part of an unsupervised language modeling objective through input masking (i.e. the
original BERT Large model, with a hidden state size of 1024).

Because of the significant computational cost of using a BERT model even for inference, one can use
as a first step a fast, scalable IR method such as BM25 [8] for pre-fetching a limited set of candidate
relevant documents from a large collection (e.g. the world wide web). Since we only submitted
results for the passage re-ranking task of the competition, this input (an unranked set of the top 1000
potentially relevant passages per query) was already available to us in the top1000 data file.

As described in the original BERT paper [1], a pre-trained BERT model can be easily re-purposed
to predict an objective of choice by replacing the final (output) layer of the language model with a
dense neural layer and a loss function corresponding to the desired objective. The input for this dense
layer is the embedding corresponding to the first token (i.e. [CLS]) in the input sequence. In our case,
the objective is calculating a relevance score between a given input query (which, as described, has
been previously expanded), and a candidate passage or document from the set of top 1000 candidate
documents/passages. To obtain such a score, we can simply cast document relevance estimation
as a binary classification objective, in which case the score is the estimated (output) probability of
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Table 1: Number of passages versus the number of queries with which they were matched in the
training set ground truth relevance pairings.

Num. passages Num. matched queries
503187 1
11328 2
1396 3
343 4
115 5
42 6
27 7
14 8
7 9
13 ≥ 10

Table 2: Top 3 beam search outputs generated by the query2qury transformer decoder model for an
example set of original queries.

Original query Generated queries
how long can cooked chicken last in fridge how long keep refrigerated chicken

how long will cooked chicken keep
how long keep chicken

what processes occur during cellular photosynthesis what is not a waste product of cellular respiration
what is oxidized during cellular respiration
what is not a waste product of cellular respiration

what can be done for leg cramps where do leg cramps usually occur
what would cause leg cramps
what would cause cramps

how early can i take a pregnancy test how soon can a pregnancy test pick up pregnancy
when to take a pregnancy test
when can a pregnancy test pick up pregnancy

average salary structural engineer what is the average salary for a google employee
what is the average salary for a mechanical engineering
what is the average starting salary for a mechanical engineering

average tesla cost what is the cost of the new tesla
how much money do you save purchasing a tesla
how much do you have to pay for a tesla

relevance. For training the model, the positive (i.e. related) query-passage pairs are contained inside
the aforementioned qrels file of ground truth relevance pairs, while negative pairs can be generated
by treating any other query-passage pair as unrelated.

Following [6], we feed the query as sentence A and the passage text as sentence B (using the original
notation of [1]) after truncating the query to have at most 64 tokens and truncating or padding the
passage text such that the concatenation of query, passage and separator tokens have the maximum
length of 512 tokens. We fine-tune the model to our re-ranking task using the standard binary
cross-entropy loss.

After training the model, one can run it on unseen queries and compute a relevance score for each
candidate document/passage, and afterwards simply sort them in order to obtain a final ranking.

3 Results

Table 2 displays several examples of equivalent queries generated by the query2query transformer
decoder. We have observed that the model is able to reliably rephrase the input for queries pertaining
to popular subjects, however queries related to more specialized topics or containing exotic terms
often yielded semantically unrelated expansions, which could potentially confound subsequent
retrieval steps. Moreover, generated expansions sometimes were both grammatically correct as well
as aligned with the query thematic, but introduced topical drift, which could at times prove beneficial
but potentially also detrimental for downstream retrieval. We believe that a method allowing for
better reordering or filtering of the beam output, alongside careful parameter tuning and input pair
sampling can improve query expansions in future iterations of the model.
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Next, we present the end-to-end performance of our method.

We submitted a single official run for evaluation. Table 3 shows the detailed performance breakdown
in terms of Mean Average Precision (MAP), Normalized Discounted Cumulative Gain (nDCG)
and Precision at 10 retrieved documents (P@10). The per-topic maximum, median and minimum
scores are computed across all 37 submissions and provided by the committee. The categories in
the leftmost column indicate the ranges that our topic predictions fall into. For example, in terms
of MAP, 2 of our ranking predictions achieve the best score and 29 of them range between the
maximum and median scores.

Table 3: Experiment results of query2query

Number of Topics mAP NDCG P@10

At Best 2 1 17
Best to Median 29 26 10

At Median 5 3 13
Median to Worst 6 13 2

At Worst 1 0 1

From the results, we observe that 72.1%, 69.8% and 93.0% of our the ranking predictions fall into
the median to best region in terms of the three metrics, respectively. It is worth noting that our model
achieved top performance for 17 out of 43 test queries in total for the P@10 metrics.

4 Conclusion

This report describes Brown University’s entry to the TREC 2019 Deep Learning Track, in which we
produced the final ranking of a set of 1000 candidate passages for given queries. Our method aims
at enriching the meaning and surface form of a query by expanding it with similar queries, in the
hopes that during the subsequent ranking process, the expanded query would provide extra semantic
information or vocabulary overlap that would facilitate the retrieval of more relevant documents.
We found this retrieval method to be promising in terms of retrieval results, albeit with significant
margins for future improvement. A natural focus point of future work is improving the semantic
similarity between generated queries and the original query. In this work, we simply use the top
3 output beams in terms of estimated log-likelihood. However, different metrics could be used to
re-order and prioritize a larger number of generated outputs. In addition, further investigation can
be carried out in terms of various ways of synthesizing the query information or condensing the
documents’ representation.
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