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Abstract

This paper describes ETH Zurich’s submission to the TREC 2017 Precision
Medicine (PM) track. We begin by performing literal query term matching, tak-
ing into account the likelihood of document relevance in terms of cancer types,
genetic variants, and demographics. In a second, subsequent stage, we re-rank
the most relevant results based on a range of deep neural gene embeddings that
project literal genetic expressions into a semantics-preserving vector space using
feed-forward networks trained on PubMed and NCBI information but also relying
on generative adversarial methods to determine the likelihood of co-occurrence
of various mutations within the same patient/article. Empirical results show that
even without existing expert labels, the proposed method can introduce marginal
improvements over competitive tf-idf baselines.

1 Introduction

Precision medicine is a modern field of study that aims to use genomic information in finding more
effective treatments for patients. Due to the popularity of the new paradigm, the volume of annually
published scholarly precision medicine articles has been growing rapidly in recent years. While this
considerable amount of scientific research holds a rich and ever increasing well of knowledge, its
sheer scale makes it intractable for manual inspection and mandates the development of dedicated
automatic retrieval facilities.

In this paper, we present a modular patient-centric information retrieval system for use in precision
oncology settings. Based on patient demographics as well as information regarding the type of tumor
and its genetic composition, we rank scholarly articles as well as clinical trials with respect to their
relevance for a range of reference patients.

Our ranking scheme combines evidence from four sources of information: (1) literal presence of
keywords in the description of patients, cancer types and genetic variations. (2) dense semantics-
preserving vector representations of key biomedical terms (3) functional neural embeddings of
gene expressions and their patient context (4) generative adversarial models of gene mutation co-
occurrence. After an initial retrieval run evidence for the usefulness of expansion candidates is
aggregated across our various sources, resulting in a significantly more robust ranking of resources.

Lacking historic training data, in this first edition of the TREC Precision Medicine track, we manually
annotated a sample of 1800 (1200 abstracts and 600 clinical trials) query-document pairs in order to
train and optimize any supervised representation learning and fusion schemes. While these labels were
created without direct involvement of domain experts, we see significant performance improvements
over training-free exact matching methods.
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2 Methodology

Our ranking scheme is centrally based on exact keyword matching (Section 2.1) and subsequently
further refined by three neural-network components that estimate a range of compatibility scores
between patient and document (Sections 2.2 - 2.4). Finally, we apply a number of score fusion
methods in order to re-rank the original exact matching results (Section 2.5).

2.1 Term-based Exact Matching

We use patient descriptions (topics) to generate queries that we compare to documents to obtain a
similarity score. The theoretical framework adopted for representing both the abstracts and trials is
the vector space model as described by Salton et al. [7] where term weights corresponf to tf-idf scores.
For the practical implementation, we use the open-source framework Lucene1. In order to account
for varying field importance in structured topics, we apply static weighting factors as detailed in
Table1. To further improve recall, we perform term-wise query expansion off all genome identifiers
by appending their various synonyms as specified by the HUGO Gene Nomenclature Committee
(HGNC)2.

For scientific abstracts, we divide age-specific query terms into three categories (pediatric, adult and
geriatric medicine). For each of these categories, we add the age indication terms proposed by Kaster
et al. [5]. Clinical trial runs are enhanced by performing exact age-range matching on the age range
provided by the clinical trial descriptions.

Table 1: Empirically optimal field weights.

Term Scientific Abstracts Clinical Trials
Gender 0.05 1
Age 0.05 1
Condition 1 1
Genes 1 0.2

2.2 Neural Context Embedding

In our second approach, we go beyond literal term matching by computing semantic vector represen-
tations of gene identifiers in patient descriptions and abstracts. We construct a vocabulary of gene
symbols, biomedical concepts and frequent words observed in documents. We then use a neural
probabilistic language model according to [6], to find continuous embeddings of these words. The
similarity of a patient and a scientific abstract or clinical trial document can now be expressed as a
distance function applied to their respective vector representations.

To identify relevant gene identifiers in the document collection, we again consult the HGNC list of
gene symbols and their synonyms and apply simple heuristics based on symbol-synonym relations to
eliminate ambiguous gene symbols such as CO2 or SARS that also have non-genomic interpretations.
The biomedical concepts for our vocabulary are given by the Unified Medical Language System
(UMLS)3. We train our embeddings on all abstracts found in PubMed4 containing any of the identified
relevant gene symbols.

In a first step we replace all UMLS expressions in the abstracts by their UMLS concept identifiers
and apply the CBOW and skip-gram Word2Vec models to find continuous vector representations of
all words in the vocabulary. To optimize model parameters, we evaluate the resulting embeddings
based on the cosine distances between gene symbol synonym pairs found in the HGNC gene list. We
find the best performance for a skip-gram model, using a vocabulary of 150’000 words and a small
window size of 1 word before and after the target word and an embedding dimensionality of 250.

1https://lucene.apache.org/
2https://www.genenames.org/
3https://www.nlm.nih.gov/research/umls/
4https://www.ncbi.nlm.nih.gov/pubmed/
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Figure 1: Feed-forward network architecture for functional gene embeddings.

Relevance scores for each topic-article pair are calculated based on their vector representations
and a context-based similarity score sc. We consider the three most similar words (most proximal
embeddings) di,1, di,2, di,3 for each gene symbol gt in a patient’s description and give them ordinally
decreasing importance weights wj . We apply the commonly used term 1+log(kij) for term frequency
tf(dij) to account for multiple occurrences of the term dij in the document. The final score is the
inverted sum of cosine distances, normalized per topic for later fusion (see Section 2.5).

sc(T,D) =
∑
gt∈T

3∑
j=1

wj ∗ (1 + log(tf(dij))) ∗ (1− cos(gt, dij))

2.3 Neural Gene Embedding

In an alternative neural embedding scheme, we aim to model bio-medical properties of genes and
mutations trying to establish a Euclidean space in which functionally similar genes are projected to
proximal locations. This functional similarity is defined based on the common cancer types that both
genes are associated with, making genes that are related to the same cancer types more similar.

We use the human genome portion of the National Center for Biotechnology Information (NCBI)
dataset [1] to establish. For each gene, this collection includes chromosomal localization, gene prod-
ucts and their attributes (e.g., protein interactions), associated markers, phenotypes, and interactions.
Additionally, for each recorded gene in this dataset, there is a “summary text” field, which contains
a summary of all the information about that gene. In this summary, all the cancer types a gene is
associated with (if any) are listed. We select all genes that contain at least one human cancer type in
their summary text. This procedure results in a total of 1347 distinct genes and 109 cancer types.

We employ a single-layer feed-forward neural network to embed the genes into a Euclidean space.
The input of this network is a one-hot vector that uniquely represents a gene. The output of the
network is a vector in which each component corresponds to a specific cancer type. If an input gene
is associated with a cancer type, the corresponding element in the output vector indicating that cancer
type is set to one. Figure 1 shows the architecture of our neural network.

The input layer size is equal to the number of genes (1347) while the output layer corresponds
to the number of cancer types (109). The hidden layer size is chosen experimentally (50). The
maximum cross-validation accuracy of predicting cancer types is 60%. After training the network
with these characteristics, we use the gene representation to rank the scholarly articles. For each
topic-document pair, we calculate the overall functional relevancy score sf as the aggregated cosine
similarity between all genes gt mentioned in the topic and all genes gd mentioned in the document.
We consider three aggregation functions a = {mean,max ,mean max}

sf (T,D) = a(cos(gt, gd))∀gt ∈ T, gd ∈ D
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2.4 Adversarial Training for Gene Pair Ranking

In order to measure the compatibility of a patient’s gene mutations with mutation mentions in a
document, we use a generative adversarial net (GAN). A GAN consists of two networks trained with
respect to different objectives: the generator network aims at copying the original data distribution,
whereas the discriminator network is fed real and generated data alternately and is tasked to identify
the real data point. In optimal settings, the generator’s ability to output pseudo-realistic data increases
in parallel to the discriminator’s power to distinguish real from generated data. For the TREC
Precision Medicine Challenge, we use the GAN’s discriminator part to determine, if a patient’s gene
mutations are compatible with a gene mentioned in a document.

We use the co-occurrence of gene mutations in PubMed abstracts, provided by the TREC precision
medicine track, as training data [8]. The underlying assumption using this approach is, that genes
often occurring together also share similarities. We filter 22M abstracts for 614 genes known to be in
connection with the formation of cancer according to COSMIC [3]. For each abstract, we extract
pairs of mutated genes from the list of mentioned mutations (i.e., a document with 4 mutations yields
6 pairs). In total, we retrieve 21k unique gene pairs for further use as GAN training data.

While GANs demonstrate impressive results when generating images, it is widely known that they
suffer from poorly defined gradients at the generator/discriminator interface when tasked with discrete
variables, such as two-hot vectors representing gene pairs [4]. We use an approach proposed by Choi
et al., named medGAN [2]. This architecture utilizes the decoder part of a pre-trained autoencoder to
translate the real valued generator output vector to a discrete vector. In order to prevent mode-collapse,
the generator produces a batch of gene pairs, which are then separately fed to the discriminator along
with the average vector of the batch. However, this leaves the discriminator with the possibility to
distinguish solely on the basis of the average batch vector, which is neither available nor relevant
when looking at a single gene pair. To tackle this issue, we introduce a second training mode which
runs in parallel to the batch training. We call it single mode, providing the discriminator with a zero
vector instead of the mean batch vector. Using this architecture, we train the GAN with the gene pairs
in the form of two-hot vectors as training data.

Finally, we use the trained GAN to construct a metric to rank documents according to their gene
compatibility. For each patient gene gt and gene mention in a given document gd, we calculate
the discriminator value for Disc(gt, gd). For likely real pairs the discriminator outputs 1 and 0 for
likely unrelated data, respectively. We combine the values of Disc(.) across all gene mentions in a
document by applying an aggregation function a = {min,max ,mean}.

sg(T,D) = a(Disc(gt, gd))∀gt ∈ T, gd ∈ D

2.5 Score Fusion

The previously described constituent scores (tfidf(.), sc(.), sf (.) and sg(.)) are fused in 5 different
ways based on our manually annotated topic-document pairs. To ensure computational feasibility, the
scores of all neural approaches (sc(.), sf (.) and sg(.)) are based on the 1000 top-ranked documents
for each topic retrieved by term-based exact matching. In a first step, we combine all constituent
scores into a feature vector v, which has 8 components explained in detail in Table 2.

Table 2: Feature vector v description.

Entry Method Value
v1 Term-based Exact Matching tfidf(T,D)
v2 Neural Context Embedding sc(T,D)
v3 Functional Gene Embedding mean(sf (T,D))
v4 Functional Gene Embedding max (sf (T,D))
v5 Functional Gene Embedding meanmax (sf (T,D))
v6 GAN Gene Pair Ranking mean(sg(T,D))
v7 GAN Gene Pair Ranking min(sg(T,D))
v8 GAN Gene Pair Ranking max (sg(T,D))
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We present five ways to fuse the score vector into a single value further used to rank the list of
documents. These methods of fusing scores make up the runs submitted for the TREC Precision
Medicine Track for both abstracts and trials.

1. Weighted Sum (nDCG) This method is based on the weighted sum of each score vector. The
list of documents is ranked according to the weighted sum and evaluated using the nDCG metric. We
optimize mixture weights for ideal nDCG on our manually annotated sample.

2. Pure Term-based Exact Matching This is technically not a run fusion, since it only takes into
account the scores from Term-based Exact Matching. We chose this approach to comply with the
TREC PM 2017 guidelines, which state that exact matches are required in a document to constitute
relevance.

3. Neural Fusion The neural approach trains a feed-forward neural network with one fully con-
nected hidden layer (16 neurons) to learn ranking the documents based on the combined score vector.
The network is trained to map the input vector onto 1 if the underlying document is relevant and 0
otherwise. Again, our annotated documents serve as ground truth data. We use dropout to avoid over
fitting, which is likely due to the limited amount of training data available.

4. Weighted Sum (qrel) In contrast to the nDCG method, this approach aims at mapping the score
vector onto annotated document labels via linear regression.

5. Neural Embeddings and GAN Values Exclusively The last method is identical to the 4th
fusion method with the exception of not considering any tfidf scores. As previously mentioned, the
documents are already pre-selected by the exact matching method and this fusion therefore tests if
such pre-selection of exact terms suffices to rank documents with neural embedding scores and GAN
valuations alone.

We present a summary of the fusion process and the resulting unofficial nDCG scores in Table 3.
We can observe that the weighted sum optimized for nDCG score performs marginally better than
the pure exact matching score. This is likely due to the bias towards the exact matching score in the
annotated documents due to the annotation of only the best exact matching documents.

Table 3: nDCG scores after score fusion.

Fusion Method Type nDCG
Weighted Sum (nDCG) abs. 0.6642
Exact Matching abs. 0.6605
Neural Fusion abs. 0.5382
Weighted Sum (qrel) abs. 0.4770
Exclusive Gene abs. 0.2927

Weighted Sum (nDCG) trial 0.9654
Exact Matching trial 0.9647
Neural Fusion trial 0.8316
Weighted Sum (qrel) trial 0.9187
Exclusive Gene trial 0.4024

3 Results

We submitted ten official TREC Precision Medicine 2017 runs for evaluation, five for scientific
abstract retrieval and five for clinical trial retrieval. Table 4 lists the official performance of each run
in terms of inferred nDCG, precision at 10 retrieved documents and R-precision. At this time, no
official relevance judgments have been released.

For both tasks, literal matching represents a strong baseline that can only be marginally improved
by including functional and contextual information. The exclusion of explicit matching information
results in significant performance drops. We believe that this is due to the particular judging criteria
of this track that require exact matches in terms of gene expressions and cancer types in order to
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Table 4: Experimental results.

Fusion Method Run Identifier Type infnDCG P@10 R-Prec
Weighted Sum (nDCG) ws abs. 0.2663 0.3414 0.1941
Term-based luc abs. 0.2632 0.3379 0.1895
Neural Fusion nn abs. 0.2437 0.3034 0.1660
Weighted Sum (qrels) wsq abs. 0.2450 0.3034 0.1627
Neural + GAN gws abs. 0.1453 0.1517 0.1066

Weighted Sum (nDCG) ws trial ? 0.0571 0.0439
Term-based luc trial ? 0.0607 0.0453
Neural Fusion nn trial ? 0.0000 0.0019
Weighted Sum (qrels) wsb trial ? 0.0286 0.0257
Neural + GAN gwsq trial ? 0.0036 0.0035

constitute relevance. We can further observe that heavily parametrized methods such as neural fusion,
due to lack of training data do not gain a competitive advantage over straight-forward linear fusion
methods.

4 Conclusion

In this paper, we provide an overview of ETH Zurich’s contribution to the TREC 2017 Precision
Medicine track. Using a wide array of neural network approaches, we aim to capture contextual,
functional and pairwise genetic information expressed in topics and documents. While immediate
performance gains were rather limited, we see considerable potential for future improvement when
using this year’s official relevance judgments to train supervised models.
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