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ABSTRACT

Neural models have demonstrated remarkable performance across
diverse ranking tasks. However, the processes and internal mech-
anisms along which they determine relevance are still largely un-
known. Existing approaches for analyzing neural ranker behavior
with respect to IR properties rely either on assessing overall model
behavior or employing probing methods that may offer an incom-
plete understanding of causal mechanisms. To provide a more granu-
lar understanding of internal model decision-making processes, we
propose the use of causal interventions to reverse engineer neural
rankers, and demonstrate how mechanistic interpretability meth-
ods can be used to isolate components satisfying term-frequency
axioms within a ranking model. We identify a group of attention
heads that detect duplicate tokens in earlier layers of the model,
then communicate with downstream heads to compute overall doc-
ument relevance. More generally, we propose that this style of
mechanistic analysis opens up avenues for reverse engineering
the processes neural retrieval models use to compute relevance.
This work aims to initiate granular interpretability efforts that will
not only benefit retrieval model development and training, but
ultimately ensure safer deployment of these models.

CCS CONCEPTS

« Information systems — Retrieval models and ranking; Doc-
ument representation.

KEYWORDS

interpretability, neural ranking models, information retrieval ax-
ioms, search

ACM Reference Format:

Catherine Chen, Jack Merullo, and Carsten Eickhoff. 2024. Axiomatic Causal
Interventions for Reverse Engineering Relevance Computation in Neural
Retrieval Models. In Proceedings of the 47th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR 24),
July 14-18, 2024, Washington, DC, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3626772.3657841

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGIR ’24, July 14-18, 2024, Washington, DC, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0431-4/24/07

https://doi.org/10.1145/3626772.3657841

Jack Merullo
john_merullo@brown.edu
Brown University
Providence, Rhode Island, USA

Carsten Eickhoff
c.eickhoff@acm.org
University of Tiibingen
Tibingen, Germany

1 INTRODUCTION

State-of-the-art neural ranking models achieve high performance
on a variety of tasks. Despite their success, how these models ar-
rive at their decisions remains largely unknown. Uncovering these
decision-making behaviors is crucial, not only for diagnosing model
errors and improving ranking performance but also for addressing
potential biases in the model. As neural retrieval models become
larger and more inscrutable, there is a need for methods unveiling
the various relevance criteria considered throughout the parameters
of a ranking model.

Axiomatic IR constructs formal constraints, or axioms, outlining
specific properties that an effective ranking model should satisfy.
For instance, the TFC1 axiom [11] asserts that a ranking model
should prioritize documents with a higher frequency of query term
occurrences. IR axioms provide a significant advantage in diag-
nosing model behavior by testing a model’s adherence to desired
properties. Retrieval axioms have been instrumental in identify-
ing and rectifying shortcomings in traditional retrieval models to
enhance their ranking capabilities [3]. However, modern neural
retrieval models are sophisticated black boxes, and it is unclear
whether they learn structured features that directly correspond to
interpretable mechanisms for, e.g., tracking query term frequencies.

To gain a better understanding of how neural retrieval models
make predictions, causal intervention-based methods emerge as
a solution. Interpretation of language models often uses methods
based on causal mediation analysis [25] to localize model behaviors
[30]. More recently, Mechanistic Interpretability focuses primarily
on understanding learned behaviors of the Transformer architec-
ture [29] underlying modern NLP systems [9, 14, 21, 33]. These
methods are extremely effective at isolating important model com-
ponents and more significantly, understanding how these compo-
nents interact to complete a task. From an explainability perspective,
this form of analysis provides a level of granularity that surpasses
existing explainable IR (XIR) work, such as probing which yields
correlational but not causal insights.

In this paper, we combine the inherently human-interpretable
nature of IR axioms with diagnostic datasets to propose a causal-
intervention based hypothesis testing framework to explain and
localize the ranking behavior of neural models. First, we design
a novel activation patching setup for retrieval, highlighting dif-
ferences in evaluation compared to existing activation patching
efforts on generative language tasks. Next, we discuss the short-
comings of current diagnostic datasets and provide guidelines for
systematically curating diagnostic datasets for activation patching.
Finally, we demonstrate the effectiveness of activation patching
for targeted hypothesis testing in neural retrieval models. Specifi-
cally, we test if such models adhere to the TFC1 axiom, and further
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analyze if this axiom is implemented in an interpretable way. On
a pre-trained DistilBERT-based encoder, TAS-B [19], we find evi-
dence for an attention head-based mechanism that acts as a term
frequency identifier.

Overall, this perspectives paper aims to initiate interpretability
efforts to localize model ranking behavior, potentially reshaping our
approach to isolating axiomatic behavior in neural models. Such
efforts can pave the way for constructing a compositional definition
of relevance, thereby enhancing both ranking capabilities and safety.
Specifically, we make the following contributions:

o Extend activation patching to retrieval models, uncovering
the concrete mechanisms capturing retrieval axioms.

o Establish best practices for constructing diagnostic datasets
for activation patching.

e Demonstrate that TAS-B learns a latent mechanism for track-
ing term frequencies, congruent with the TFC1 axiom.

e Propose new directions for explainable IR (XIR) research
based on causal interventions

The remainder of this paper is structured as follows: In Section
2, we present existing work on axiomatic IR and mechanistic inter-
pretability and describe previous attempts to understand ranking
concepts learned by neural models. Section 3 introduces our acti-
vation patching methodology for retrieval settings. In Section 4,
we outline our experimental setup, and in Section 5 we present
the results of our causal interventions. In Section 6, we discuss
the implications of axiomatic mechanistic interpretability work
and propose future XIR research directions, and then conclude our
paper in Section 7.

Author Perspectives. The perspectives presented in this paper
reflect the views of academic authors based in North America and
Europe. Our study introduces methods aimed at enhancing our
understanding of the underlying mechanisms of neural retrieval
models and relevance computation. The implications of this work
extend beyond the academic context, offering potential benefits to
industrial research and practice by facilitating a hypothesis testing
framework for assessing desirable or undesirable model properties
prior to deployment.

2 RELATED WORK
2.1 Axiomatic IR

Retrieval axioms were first introduced by Bruza and Huibers [3] and
since then, have been applied in a number of ways to enhance rank-
ing effectiveness through axiomatic re-ranking [17] or regularizing
neural retrieval models [5, 6, 27]. Recent research in explainable
IR (XIR) has leveraged axioms to uncover and explain the ranking
concepts learned by neural retrieval models [4].

From an explainability perspective, axioms offer a significant
advantage over alternative interpretability methods such as feature
attribution due to their grounding in concepts that are inherently
intuitive to humans. For example, diagnostic datasets have been
used to systematically test ranking axioms in neural models [4, 26].
Furthermore, axioms have been used to explain neural ranking
decisions by investigating the extent to which the decisions can be
explained by retrieval axioms [31]. While prior approaches holis-
tically shed light on the end-to-end behavior of neural models by
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identifying satisfied axioms, we extend this work by localizing rank-
ing concepts to specific components. This approach will allow us to
gain a more granular understanding of how ranking models make
their decisions.

2.2 Understanding NRM Learned Concepts

Probing is a popular method that has been used previously to assess
a model’s acquisition of certain concepts and localize the network
components responsible for such behavior. This technique involves
training a light-weight classifier on top of a model’s components
(e.g., embeddings or attention maps) to evaluate the information
encoded in its representations [7, 10, 12, 13, 20, 28, 32, 34].

Although these methods reveal the information learned by the
network based on correlational data, there are ongoing debates
regarding the reliability of probing in determining actual causality
and confirming the concrete utilization of learned concepts in the
final inference [1, 2]. In this paper, we opt for a different approach,
developing a causal-intervention based method for the analysis of
neural retrieval models.

2.3 Mechanistic Interpretability

Mechanistic interpretability aims to unravel the internal mecha-
nisms of neural models, mapping them to human-understandable
concepts, typically through causal interventions. The primary ob-
jective is to localize model behavior to specific components, such
as individual attention heads, and analyze the interactions among
these components to determine how they complete a task. One way
this is done is with activation patching, which replaces the output
of a component from one forward pass (e.g., an attention layer)
with that from a similar input (‘patching’). It is also commonly
referred to as causal mediation analysis [30], causal tracing [21], or
interchange interventions [14]. In generative language modeling,
causal interventions have proven valuable to detect gender bias
[30], investigate where models store factual information [15, 21],
identify a collection of components that interact with each other to
perform concrete tasks [18, 33], and correct model errors through
editing [21, 22].

Existing XIR methods for interpreting neural ranking models cur-
rently lack this level of granularity and causal understanding. This
paper aims to address this gap by introducing causal interventions
for retrieval.

3 METHODOLOGY

In this section, we provide the technical details on activation patch-
ing in the context of generative language tasks and outline our spe-
cific activation patching setup tailored for retrieval. Additionally,
we detail our process for curating a dataset intended for activation
patching purposes.

3.1 Activation Patching

To understand how activation patching can localize model behavior
to specific components, it is important to recap how information
flows through the model. Transformer models are comprised of
several stacks of multi-headed attention and multi-layer perceptron
(MLP) layers [29]. The residual connection that updates the hidden
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Figure 1: Top: Traditional transformer diagram depicting
a linear information flow between blocks. Bottom: Non-
sequential transformer diagram demonstrating read and
write operations to an assumed common residual stream.
Layernorms are not shown for simplicity.

representation in a model by adding the output of an MLP or at-
tention block to its input induces a helpful intuition for analyzing
these models: transformers move information through a residual
stream that network components “read” from and “write” to [9].
This reinterpretation of information flow in transformer models
carries a crucial implication for interpretability work: Each layer
possesses the capability to “communicate” with downstream layers
by transmitting information through the residual stream by adding
their outputs to it. Figure 1 visually represents this information
flow.

Previous work on activation patching for generative language
tasks involves running the model on pairs of inputs: (1) a clean
input, denoted as X;j¢qp, that produces a correct answer (e.g., input:
“Paris is the capital of”, answer: “France”) and (2) a corrupted input,
denoted as Xcorrupt, Which changes the input in a minimal way
such that the expected answer changes (e.g., input: “London is the
capital of”, expected answer: “England". The model runs on each
input and stores all of the intermediate activations (MLP outputs,
hidden states, etc.). Notably, in the clean run, the model produces
the correct answer, whereas in the corrupted run, it does not. In a
third, patched, run, the model runs on Xcorrups. But during this run,
an activation from the clean run is patched in to replace the corre-
sponding corrupted activation. After the model completes this run,
the evaluation focuses on gauging how much the output has shifted
away from the corrupt answer (England) and toward the correct
answer (France), typically by examining the difference between
the relevant logits. The intervention is iteratively repeated for all
possible activations to localize those activations most instrumental
for the task. If an intervention on a specific activation significantly
improves performance, it signifies the importance of that activation
for producing the right answer.

We can patch activations into a transformer in several different
places: (1) residual stream, (2) attention outputs, (3) individual at-
tention heads, and (4) MLP outputs. Additionally, we can also patch
at specific input positions (i.e., we can patch in activations for indi-
vidual tokens in the input). This allows for a nuanced exploration
of how different components contribute to model behavior.

To make activation patching suitable in a retrieval setting, we
propose several modifications to this general scheme: (1) to the
input pairs and (2) to the evaluation metric. To construct a suitable
dataset for activation patching in the context of retrieval, we create
clean and corrupt query-document-document triples with respect
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to a target axiom, whose behavior we aim to isolate in the network
(more details in Section 3.2). We refer to the clean and corrupt
documents in these triples as Xpaseline a0d Xperrurbed- respectively.

However, unlike prior methods which consistently patch activa-
tions from Xpgseline Int0 Xpersyurbeq during the third patched run
through the model, we determine the patch based on the pertur-
bation’s expected effect. Specifically, we always patch activations
from the document with higher expected performance into the
run on the document with the lower expected performance. This
modification accounts for axiomatic perturbations that may either
add or remove crucial relevance concepts from a document. For
instance, in evaluating term frequency, query terms could be intro-
duced to a document to observe how the ranking score increases,
or conversely, query terms might be removed or replaced to as-
sess how the ranking score decreases. Our full activation patching
algorithm! is shown below and visualized in Figure 2:

(1) Baseline run: Run the model on Xp4se1ine- If the ranking score
of Xpaseline is expected to be greater than X, ey surped, cache
activations and record the ranking score.

Perturbed run: Run the model on Xpeyrpeq- If the ranking

score of Xpersurbea is expected to greater than Xpgserines

cache activations and record the ranking score.

(3) Patched run: Run the model on one of Xpuseline Of Xperturbed
(whichever has the lower expected ranking score), replac-
ing a specific activation (e.g., attention layer output) with
the cached values from the other run, and record the final
ranking score.

—
N
~

To assess the effect of the patch on model performance, we
evaluate using the normalized difference in ranking scores. A value
of 1 indicates that the intervention increases the ranking score
such that it fully recovers the performance of the higher ranked
document, while a value of 0 indicates the patch had no effect on
performance. In other words, a value of 1 suggests that the patched
activations encode important information for the ranking score
calculation.

3.2 Diagnostic Dataset Curation

Activation patching requires pairs of inputs to isolate the effects of
a model’s ability to complete a task. For retrieval, we define input
document pairs with respect to a query to form query-document-
document triples. To construct our diagnostic dataset triples, we
modify documents according to the TFC1 axiom as defined by Fang
etal. [11]:

TFC1 Let g = w be a query with only one term w. Assume the
length of document d; equals the length of document dj.
If the number of occurrences of w in d; is greater than
the number of occurrences of w in dy, then for query q,
the relevance score of d; should be higher than ds.

We define two perturbations to observe the effects of TFC1 along
two lenses: injection and replacement. Thus, TFC1-Inject (TFC1-I)
and TFC1-Replace (TFC1-R) are outlined below. For a given query
and document,

'We modify the TransformerLens library [23] and our activation patching code can be
found at https://anonymous.4open.science/r/sigir-submission-4647.
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Query: What is the acceptance rate at Wellesley?
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Figure 2: Activation patching setup for retrieval. In this example, a document pair is constructed to observe term frequency
effects in the model. A perturbed document X;;1yrpeq (left) is created by injecting a selected query term (“Wellesley”) at the
end, and a baseline comparison document Xj,.i,. (right) is created by adding filler tokens to equalize document lengths. Each
input is run through the model, with network components reading and writing information to their respective residual streams.
In a third patched run, the model runs on Xj4cjine, and an activation (e.g., attention head output) from the cached X;,¢;1yrpea
run is patched in. The model continues its run, with the residual stream now affected by the patch to produce a new ranking

score.

TFC1-I We randomly sample a query term and insert it at the
end of the document d to create our perturbed document
dp. To create a baseline document dj, equal in length to
our perturbed document, we insert a filler token(s) (e.g.,
‘a’) at the end of document d.

TFC1-R  We randomly sample one query term and replace all its

occurrences in document d with a filler token(s) to create
a perturbed document dj,. The original document d acts
as the baseline document dj,.

Figure 3 includes an example of a query-document-document
triplet for TFC1-L For a given query “average snowfall nyc”, the
term “snowfall” is randomly selected for injection. The perturbed
document is constructed by injecting “snowfall” to the end of the
original document but before the SEP token. The baseline document
is constructed to match the length of the perturbed document by
inserting a filler token (i.e., “a”) that has minimal impact on the
ranking score.

We curate our diagnostic dataset using MS-MARCO [24]. For
each query in the development set (approximately 6.8k queries) we
retrieve the top 100 relevant documents and perturb them. Subse-
quently, we recalculate retrieval scores for all queries on the per-
turbed corpus and identify the 100 queries exhibiting the highest
average change in score per document. This procedure is conducted
independently for TFC1-I and TFC1-R. Overall, by strategically per-
turbing the corpus and selecting queries based on their impact on
retrieval scores, we can effectively leverage activation patching to
glean insights into specific areas of the network that contribute to
variations in ranking performance.

To enable a comprehensive analysis of the most crucial tokens
across various documents, we establish several token classes for
standardized comparison. Tokens are categorized primarily accord-
ing to their relation to the original query, considering factors such
as whether the token appears in the full query and/or is the chosen

Table 1: Token type classifications for documents. TFC1-I
perturbed documents include all six token types, while TFC-
R perturbed documents have five token types since no terms
are injected during perturbation.

Label Definition

tokcrs The CLS token.

tokinj The selected query term injected into the document.

tokgterm+  Occurrences of the selected query term that already
exist in the original document.

tokgterm-  Occurrences of the non-selected query terms in the
original document.

tokyiher Terms in the original document that are not query
terms.

toksgp The SEP token.

term for injection. The detailed breakdown of token types and their
definitions is presented in Table 1, while an illustrated example of
a document with labeled token types is depicted in Figure 3.

Query: average snowfall nyc

Perturbed Doc: [CLS] The average snowfall is 75 cm per year in NYC. snowfall [SEP]

Baseline Doc: [CLS] The average snowfall is 75 cm per year in NYC. [FILLER] [SEP]

Token Types: tokcLs tokinj tokgterm:  toKgterm- tokother toksep

Figure 3: Example of a perturbed and baseline document pair
for TFC1-1, labeled by token types.
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4 EXPERIMENTAL SETUP

We run all our experiments on TAS-B [19], a DistilBERT-based
model with 6 layers and 12 attention heads per attention layer.
TAS-B independently encodes queries and documents and uses
a pooled representation of the CLS token for ranking score cal-
culation. Beyond its status as a high-performing neural ranking
model, prompting our interest in understanding its inner workings,
TAS-B is an interesting target due to its simplified architecture.
Since activation patching involves iterative interventions on model
components with multiple runs for each input, models with fewer
parameters, such as TAS-B, demand fewer computational resources.
Additionally, the smaller architecture aids in precisely localizing
the impact of interventions by narrowing down the search space.

Recall that activation patching involves patching in activations
from a high-performing run into a low-performing run. Considering
the opposing perturbation effects of TFC1-I and TFC1-R (where
TFC1-Iraises ranking scores through injection of query terms while
TFC1-R lowers ranking scores of perturbed documents by removing
query terms), the activation patching setups for these scenarios
are inverse. Specifically, in the experiments on TFC1-I, we run
the model on Xpeine and the activations from Xpersyrpeq are
patched in. Conversely, for the TFC1-R experiments, the model
runs on Xpersurped and activations from Xpgsejine are patched in.
In both cases, the model runs on the input with fewer occurrences
of the selected query term, allowing observation of the effects of
patching in an activation from a run on a document that contains
more instances of the selected query term.

5 RESULTS

In this section, we present the results from our activation patching
experiments and describe the components in TAS-B that encode a
term frequency signal.

5.1 Importance of Added/Deleted Query Terms

TFC1-l TFC1-R
Intervention

1
5 . s l increases score

g Intervention does
3, not affect score

I 1 Intervention

decreases score

Layer

g8 3 8 8 8 & g 8 8 8 8 &

FIE S I S X FF X

28 2 8 %8 3 R 2 3 % % 3

o 3 3 8 % o 3 3 & ©°
Token Type

Figure 4: Results from patching into the residual stream at
the start of each layer over all tokens positions in the docu-
ment.

Figure 4 displays the results of activation patching for TFC1-I
and TFC1-R. In these experiments, we patch in the residual stream
at the beginning of each layer for each token in the document. To
identify which tokens exhibit the most significant impact across all
documents, we categorize the results for all document tokens based
on their token type, as defined in Table 1. In the patching result
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figures, blue squares highlight the tokens that increase performance
when patched.

First, we find that the model becomes confident and reaches a
decision in the later layers, specifically in Layers 4 and 5 (Figure 4).
At this point, the term frequency information is transferred from
the existing selected query term tokens tokgserm+ to the CLS token.
This shift towards the CLS token aligns with expectations, consider-
ing that the ranking score is derived from a pooled representation
of the CLS token.

Second, for TFC1-], the injected tokens (tokin ) surprisingly are
not the most important for recovering performance. Rather, the
instances of the selected query term already present in the original
document (tokgserm+) are the most impactful. We postulate that
the model may store important information in query terms situated
toward the beginning of the document. To further investigate this
hypothesis, we run an additional experiment changing the location
of the perturbation, injecting the selected query term at the begin-
ning of the document rather than the end. By doing so, we find
that this leads to a shift in importance towards the injected tokens
at the beginning of the document (Figure 5), suggesting that the
model stores the majority of the term frequency information in the
initial occurrence of duplicate terms.

Append Prepend
PP P! = Intervention
" . d . l increases score
4 4 05
g g A Intervention does
= not affect score
0.5
. 5 Intervention
ﬁﬁﬁﬁﬁﬁ oo o= o oo decreases score
o o o o o o o =] o o o o
= = = X = =~ = = ol F = =~
2 = 8 3§ 3 7 2 2 5 3 3 @&
o 3§ 8 % 3 3 3 37

Token Type

Figure 5: TFC1-I residual stream patching results by location
of term injection. The left shows results from the original
patching setup, with the selected query term injected at the
end of each document. On the right, selected query terms are
injected at the beginning of the document.

Third, for TFC1-R, patching in the activations from the baseline
run into the perturbed run, precisely at the positions where the
query term instance was removed, leads to significant performance
improvements. These outcomes, when considered alongside the
observations from patching for TFC1-I, indicate that, as anticipated,
term frequency information is remarkably localized to the selected
query term.

Additionally, we conduct experiments on the outputs of atten-
tion layers and MLPs, yet we do not observe any indications of
either component type significantly influencing performance. Con-
sequently, we hypothesize that the term frequency signal is likely
localized to individual attention heads. To explore this hypothesis
further, we proceed to perform activation patching specifically on
attention head outputs in the next subsection.
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Figure 6: Activation patching on individual attention heads reveals four heads (0.9, 1.6, 2.3, 3.8) that encode the TFC1 axiom.
These heads fully recover and exceed the perturbed performance when the model runs on the baseline inputs. Here, we present
results for the top (left) and bottom (right) 10% of relevant documents per query. Even though all documents have at least one
occurrence of a query term, the attention heads are only effective when there is an existing relevance signal.

5.2 Term Frequency Signal Components

Patching individual attention heads for TFC1-I reveals that atten-
tion heads 0.9 (Layer 0, Head 9), 1.6, 2.3, and 3.8 heavily influence
ranking performance (Figure 6) when fielding term frequency in-
terventions. When these four heads are patched in, the model fully
recovers (and even surpasses) the perturbed performance. This sug-
gests that these heads contain a high concentration of information
important to the ranking score calculation. Interestingly, we ob-
serve that these heads are most effective when there is an existing
relevance signal. In other words, these components may amplify
existing indications of relevance but do not, by themselves signal
relevance in the absence of other evidence. Figure 6 presents the re-
sults categorized by the top and bottom 10% of relevant documents
per query. We find that heads 0.9, 1.6, 2.3, and 3.8 have a substan-
tial positive impact on the top relevant documents and nearly no
impact on the least relevant documents. This observation might
explain why, when replicating the same experiments for TFC1-R,
no important heads are identified. To further verify the importance
of these four heads, we perform ablation experiments and observe
significant performance decreases (Figure 7).

5.3 Attention Head Behavior

To determine which tokens contribute to the relevance signal within
these heads, we analyze the average attention scores from the
injected tokens to other document token types. Figure 8 illustrates
that in heads 0.9 and 1.6, the injected tokens primarily attend to
other occurrences of the selected term in the document. However, in
heads 1.6 and 2.3, attention begins to shift or is entirely concentrated
on the SEP token. In other words, it appears that the term frequency
signal is stored in duplicate token occurrences in earlier layers, but
in later layers, it may be dispersed broadly across the document
representation. Due to this difference in behavior, we posit that
these two groups of heads are interacting with each other via the
residual stream to compose a relevance signal for the document, and
further discussion on this hypothesis is provided in the following
section.

Zero Ablation
Mean Ablation
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—== Perturbed Score
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2.0 A
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Head Type
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Figure 7: Results from ablation experiments on duplicate
token heads. In one experiment, we zero ablate the attention
heads. In a second experiment, we replace the values with the
mean activation value across all documents for each query.

6 DISCUSSION

Our results demonstrate the feasibility of employing axiomatic
causal interventions to localize relevance computation within spe-
cific model components. This introduces several novel directions
for XIR research. In this section, we discuss the implications of our
findings on future work for reverse engineering neural retrieval
models.

6.1 Implications for Axiomatic Datasets

In this work, we design diagnostic datasets to successfully isolate
components in a neural retrieval model that encode the TFC1 term
frequency axiom. This is promising for future axiomatic model
diagnosis, given the framework’s flexibility to seamlessly test var-
ious existing or novel axioms. However, the curation of diagnos-
tic datasets for activation patching requires careful consideration,
specifically:
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Figure 8: Average attention scores for duplicate token heads. Left: documents with at least one occurrence of the injected
term in the original document before perturbation. Right: documents with no occurrences of the injected term in the original

document before perturbation.

(1) Thoughtful Perturbation Locations: The choice of locations
for perturbations should be deliberate and well-considered.

(2) Caution with Randomization: Randomization in dataset cre-
ation may lead to sub-optimal diagnostic datasets and should
be approached with caution.

First, the selection of perturbation locations demands careful
consideration when constructing diagnostic datasets, as the location
of perturbation may yield varying effects on the ranking score for
the same document. In our initial data analysis, we discovered that,
while constructing the diagnostic dataset for TFC1-], certain queries
exhibited different levels of robustness to changes in perturbation
location. Notably, some queries demonstrated higher ranking scores
when the selected query term was injected at the beginning of the
document compared to when it was injected at the end of the
document (Figure 9). An initial hypothesis for this phenomenon
may be that TAS-B, trained on MS-MARCO, where document titles
are concatenated to the beginning of the text, might be learning
to assign higher importance to terms occurring at the document’s
start. While the robustness of documents to perturbations extends
beyond the paper’s scope, we advise future researchers to carefully
consider the perturbation location when constructing diagnostic
datasets.

Secondly, randomization has the potential to yield sub-optimal
diagnostic datasets, as it may not effectively isolate axiomatic be-
havior. Consider the TFC1-A perturbation, defined by Rosset et al.
[27] in their work to regularize neural retrieval models with ax-
iomatic datasets. This perturbation involves randomly selecting a
query term for injection:

TFC1-A We randomly sample a query term and insert it at a
random position in document d. We expect the perturbed
document d?) to be more relevant to the query - ie.,
d9 > 4.

In addition to scoring variations that may arise from the random
placement of terms, the random selection of query terms may also
result in low-IDF terms being selected. In this scenario, given a
query such as “What is the acceptance rate at Wellesley?”, random
selection without constraints could equally likely result in choosing
“Wellesley” or “the” as the term to be injected. Activation patch-
ing with “Wellesley” injected at the end of a document is much
more likely to isolate term frequency behavior as opposed to “the”
since the former is likely to cause the score for Xpersurpea to be
significantly higher than Xp,ce7ine, Whereas the latter may not. To
address this challenge in our experiments, we mitigate the issue by
selecting queries with the highest average changes in score after
perturbation, ensuring that the chosen terms are deemed “impor-
tant” query terms (e.g., high-IDF terms). An alternative selection
method could involve choosing query terms based on their part of
speech, such as selecting only nouns.

Overall, a thorough analysis of perturbation effects is crucial
during the final diagnostic dataset collection to guarantee that
perturbations exert a substantial impact on ranking scores. Without
significant perturbation effects, there may not be a sufficient signal
for the model to effectively localize axiomatic behavior in activation
patching experiments.
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Figure 9: Document ranking scores may vary depending on
the location of perturbations. In this example, we show how
ranking scores change on average for documents across five
queries. The horizontal axis represents a normalized position
in each document where a selected query term is injected,
while the vertical axis represents the ranking score. For this
perturbation, document scores decrease as the position of
the injection moves toward the end of the document.

6.2 Relevance Computation Heads

In this section, we provide further discussion of our activation
patching results and address how this work can provide a founda-
tion for discovering the compositional definition of relevance based
on IR axioms.

What roles do these heads play? Activation patching on indi-
vidual attention heads reveals four heads that significantly express
a term-frequency signal aligned with the TFC1 axiom. However, as
previously noted in Section 5, inspecting the attention scores and
patching along token positions reveals distinct behavior among the
heads. Specifically, heads in earlier layers (i.e., 0.9 and 1.6) function
as duplicate token heads, primarily attending to duplicate instances
of the selected query term (thereby potentially counting term fre-
quencies) and storing important relevance information in these
tokens. Remarkably, these heads can recover a significant amount
of ranking performance on duplicate tokens alone, sometimes even
exceeding the original performance, indicating that the model en-
capsulates a robust relevance signal in these tokens (Figure 10).

On the other hand, heads in middle layers (i.e., 2.3 and 3.8) exhibit
distinct behavior compared to heads in earlier layers. These middle-
layer heads do not attend to duplicate tokens, yet they still have a
strong positive impact on performance. Furthermore, while patch-
ing the entire head significantly influences model performance in a
positive direction, no one single token type is responsible for the
majority of this behavior, suggesting that the term frequency signal
may not be concentrated in any individual component (Figure 10).

Although TAS-B encodes queries and documents separately as
opposed to a traditional BERT ranking model, we find that previous
hypothesized behavior on the internal mechanisms of BERT aligns
with the observed interactions between heads in TAS-B. Zhan et al.
[34] hypothesize that BERT initially extracts representations for
documents and queries in earlier layers and subsequently forms
more context-specific representations to determine relevance. We
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posit that duplicated token heads write the term frequency signal
to the residual stream that relevance composition heads in the mid-
dle layers use to build a comprehensive relevance signal for the
document that is dispersed among the document representations.

While we do not explore this hypothesis in detail within this
paper, the implications suggest a potential avenue for future inter-
pretability work. Specifically, future research could explore compo-
nents in earlier layers responsible for extracting document repre-
sentations, while components in middle layers might contribute to
building a compositional definition of relevance.
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Figure 10: Activation patching results by token position for
attention heads 0.9, 1.6, 2.3, and 3.8 for documents with dupli-
cate occurrences of the selected query term. Heads in earlier
layers increase in score by more than 75% just by patching on
duplicate instances of the selected query term. On the other
hand, heads in middle layers recover less than half (or even
none at all) of the ranking score on a single token type.

Why are there no important attention heads in the last two
layers? As seen in Figure 4, the model becomes confident in its
decision in the final two layers, transferring information over to the
CLS token. Consequently, at this stage in the model, the relevance
computation has stabilized and individual attention heads no longer
play a pivotal role. Notably, the information shift from the attention
layers to the CLS token begins in Layer 4, where we observe a small
number of heads that have a medium-positive impact when patched
in. While these heads individually are not important enough to fully
recover performance, there is a possibility that they collaboratively
contribute to pooling contextual document representation for the
determination of final relevance. This presents an intriguing avenue
for future investigation.

Is relevance information stored in specific tokens? Moving
the injection location from the end to the beginning of the doc-
ument suggests that the model primarily stores term-frequency
information in the initial instance of the duplicate token (Figure
5). However, inspecting the attention scores shows that this as-
sumption may not always hold true. When the injection occurs
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at the document’s end, although the injected term predominantly
attends to earlier instances of duplicate terms, the earlier instances
of query terms also attend to the injected term (Figure 8). This
indicates that term-frequency information is distributed across all
duplicate token instances, rather than being centralized solely in
the first instance as Figure 5 might imply. One potential explanation
for this behavioral difference may originate from TAS-B’s training
paradigm, as discussed in Section 6.1. Given that document titles
are often concise and contain essential keywords, the model may
have learned to attend more heavily to tokens at the beginning of
a document. Future work could investigate this more deeply by
exploring how training paradigms influence the internal document
representations of neural ranking models.

What is the significance of the SEP token? In prior inter-
pretability studies focusing on attention score distributions, it has
been suggested that the SEP token in BERT functions as a “no-op,”
receiving redundant attention [8, 34]. In the context of ranking
models, Zhan et al. [34] find that document tokens attend heavily
to the SEP token but probing experiments reveal it does not carry a
strong relevance signal. In contrast, our findings in the earlier layers
of the model reveal that non-important tokens heavily attend to the
SEP token, while repeat occurrences of relevant tokens do not. In
these instances, the SEP token indeed serves as a “no-op” for non-
important tokens, but this allows the model to focus on extracting
more important relevance information encoded in these repeated
relevant tokens. Overall, much remains unknown regarding the
functionality of the SEP token, and future research could explore
the feasibility of identifying important or trivial terms through an
analysis of attention patterns associated with the SEP token.

6.3 Implications for Future Research

Overall, our results show that term frequency can be localized to just
a few attention heads in TAS-B, suggesting promising avenues for
further investigation. From a broader perspective, our exploration
of causal interventions opens up several new directions for XIR
research. In this section, we outline additional avenues for future
research that extend beyond the scope of our preliminary study.

Generalizability. While we find evidence of specific network
components that encode a term frequency signal aligning with
the TFC1 axiom, our study concentrates on a single model. This
necessary focus allows us to establish a deeper understanding of
this model and lay the foundation for the causal intervention frame-
work for future extension to other models. Thus, to what extent
other specific neural models and architectures incorporate the TFC1
axiom is an important direction for future work. Furthermore, in a
broader context, the generalizability of axiomatic mechanisms pro-
vides an interesting line of investigation for future work. Overall,
the straightforward nature of this framework not only facilitates
the testing of established axioms but also opens avenues for estab-
lishing potential new axioms that may be introduced in the evolving
landscape of axiomatic IR.

Interaction-Based Analysis. Although we only explore the
four heads capable of fully recovering performance on the patched
run, other heads exhibit varied impacts—some partially recover
performance, while others may even harm it (Figure 6). Analysis
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of the diverse behavior could be an interesting avenue for future
exploration, in addition to examining interactions between heads
by patching in multiple activations simultaneously, rather than fo-
cusing on individual interventions. An interaction-based approach
could potentially provide a more holistic understanding of how
different components interact to influence ranking decisions.

Going beyond interactions between model components, future
work should investigate the interactions between query and doc-
ument representations. Our work concentrates on analyzing how
axiomatic concepts are encoded in a ranking model, specifically
through its document representations. This emphasis arises from
the characteristic of TAS-B, which independently encodes queries
and documents. Consequently, our analysis does not have access
to direct interactions between queries and documents. The choice
to focus on document representations aligns with the architecture
of TAS-B, providing a first foundational understanding of how ax-
iomatic signals manifest in this specific model. While our analysis
is tailored to TAS-B, we view these initial results as promising for
future investigations that delve into interaction-based models. Ex-
ploring such models could reveal further insights into the encoding
of axiomatic concepts, paving the way for a more comprehensive
understanding of neural retrieval models.

Direct vs. Indirect Causal Effects. In this paper, we use ac-
tivation patching to demonstrate the potential of isolating rele-
vance computation within specific model components. Activation
patching serves as a crucial starting point in understanding the
underlying mechanisms of neural retrieval models and their align-
ment with human intuition. Once an understanding of the general
feasibility of localizing model behavior is established, we can lever-
age the insights learned from activation patching to explore more
sophisticated interventions to gain a deeper understanding of the
inner workings of neural models. For example, while patching an
activation can demonstrate its influence on the ranking score, it
primarily indicates an indirect causal effect. In other words, we
can achieve a more nuanced understanding of which downstream
model components are affected by the patch that end up changing
the final ranking score. To disentangle the direct causal effect of
patching, future research may employ path patching. The process
of path patching resembles activation patching but includes an
additional forward pass that patches in the original downstream
activations. For more details, we refer the reader to Wang et al. [33]
and Goldowsky-Dill et al. [16].

Model Editing. Reverse engineering relevance computations to
understand model behavior also serves as an initial step for various
other avenues of XIR innovation. Localizing the internal mecha-
nisms for relevance can lead to advancements in model ranking per-
formance through component editing. For instance, in cases where
the model may demonstrate erroneous behavior, model weights
[21] or attention patterns [22] can be directly modified to promote
more accurate performance. Similarly, employing causal interven-
tions can help identify the presence and location of biases encoded
within retrieval models, thus enabling corrective measures. As an
example, Vig et al. [30] use causal interventions to detect gender
bias in pre-trained Transformer language models. Future work in
retrieval could test for similar sensitive concepts by constructing
diagnostic datasets to reverse engineer where certain biases may
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reside within neural retrieval models. Furthermore, this hypothesis
testing framework can be used to detect the impact of adversarial
attacks on model ranking performance and subsequently aid in
designing interventions to mitigate such attacks.

7 CONCLUSION

In this perspectives paper, we design causal interventions to identify
the concrete attention heads that encode a robust term frequency
signal aligned with the TFC1 axiom. Our findings hold promise for
future research, indicating the potential of employing mechanistic
interpretability methods alongside diagnostic datasets to precisely
identify where axiomatic concepts reside in neural ranking models
and how relevance is computed. Going beyond the scope of diagnos-
ing ranking models, the applications of causal intervention methods
are widespread. They include model editing to enhance ranking per-
formance, correction of potential biases, designing systems resilient
to adversarial attacks, and investigating the generalizability of rele-
vance components in ranking models. Overall, we hope this work
can be a starting point for the information retrieval community
for mechanistic interpretations of neural models that will lead to
further insights into the inner workings of neural retrieval models.
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