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ABSTRACT

Low-frequency terms are a recurring challenge for information
retrieval models, especially neural IR frameworks struggle with ad-
equately capturing infrequently observed words. While these terms
are often removed from neural models — mainly as a concession to
efficiency demands - they traditionally play an important role in
the performance of IR models. In this paper, we analyze the effects
of low-frequency terms on the performance and robustness of neu-
ral IR models. We conduct controlled experiments on three recent
neural IR models, trained on a large-scale passage retrieval collec-
tion. We evaluate the neural IR models with various vocabulary
sizes for their respective word embeddings, considering different
levels of constraints on the available GPU memory.

We observe that despite the significant benefits of using larger
vocabularies, the performance gap between the vocabularies can
be, to a great extent, mitigated by extensive tuning of a related
parameter: the number of documents to re-rank. We further investi-
gate the use of subword-token embedding models, and in particular
FastText, for neural IR models. Our experiments show that using
FastText brings slight improvements to the overall performance of
the neural IR models in comparison to models trained on the full vo-
cabulary, while the improvement becomes much more pronounced
for queries containing low-frequency terms.
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1 INTRODUCTION

Neural network approaches for Information Retrieval have been
showing promising performance in a wide range of document re-
trieval tasks. Various studies apply neural methods by introduc-
ing pre-trained word embeddings into classical IR models [13, 14],
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adapting word embeddings to retrieval tasks [4, 6], or proposing
altogether novel neural IR models [3, 7, 8, 16]. An essential core
building block of all these approaches is the word embedding model,
which defines the semantic relations between the terms.

Typically, word embeddings are defined on a fixed vocabulary.
As a common practice in neural network approaches, terms with
very low collection frequencies are pruned from the vocabulary,
becoming Out-Of-Vocabulary (OOV) terms. The reason for limit-
ing the vocabulary in this way often stems from (GPU) memory
constraints, efficiency considerations, or noise reduction efforts.

However, in the context of retrieval modeling, low-frequency
terms are known to bear high degrees of informativeness or salience,
and therefore play an important role in identifying relevant docu-
ments. In classical IR, the importance of such terms is quantified by
term salience measures, such as the Inverse Document Frequency.
Removing low-frequency terms in the training stage of neural IR
models potentially harms the effectiveness and robustness of the
derived models, especially for queries containing the affected terms.
Even if neural IR models cover the full collection vocabulary, two
issues remain: (1) The model performs poorly on previously unseen
terms appearing at retrieval time (OOV terms). (2) Due to the lack
of training data for low-frequency terms, the learned vectors may
not be semantically robust.

In this study, we explore the effect of low-frequency terms on
the effectiveness and robustness of neural IR models. We conduct
an extensive range of controlled experiments on three recent neu-
ral IR models, namely KNRM [16], CONV-KNRM [3], and Match-
Pyramid [8], evaluated on the MS MARCO [1] passage ranking
collection, and finally propose potential solutions to the general
underlying vocabulary issue in neural IR models.

The novel contributions of this paper are two-fold: We begin by
exploring the performance of neural IR models trained on different
vocabularies (Section 4). We observe that despite the significant
benefits of using larger vocabularies, model performance is highly
sensitive to another essential parameter common to virtually all
neural IR models: the re-ranking threshold, which defines how
many of the initially retrieved documents are re-ranked by a neural
IR model. We investigate the relationship between vocabulary size
and re-ranking threshold, noting the sensitivity of the models to the
latter, especially for models with smaller vocabularies. Our results
suggest that a well-tuned re-ranking threshold can largely mitigate
the negative effect of pruned vocabularies.

Secondly, we study the effect of embedding sub-word tokens
in comparison to using the full vocabulary of word-level tokens
(Section 5). In particular, we investigate the use of FastText [2], a
model based on the composition of character n-gram vector rep-
resentations, designed to address OOV issues. Our results suggest
that the overall performance of the model with FastText remains
close to the results of using the full vocabulary. However, character-
level models achieve significantly better performance on queries
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containing low-frequency terms. We argue that this is due to bet-
ter generalization of the character-level model that benefits from
other words with similar n-gram contexts. This early-stage study
therefore recommends the use of sub-word token embeddings as a
strategy for retaining the effectiveness and robustness of neural IR
models, especially with regard to low-frequency query terms.

2 BACKGROUND AND RELATED WORK

In this section, we briefly explain the sub-word embeddings, fol-
lowed by discussing related work to our study.

Sub-word embedding models produce a vector representation of
a word based on composing embeddings of the character n-grams
composing the word. In this way, the models can provide a se-
mantically meaningful embedding vector even for unseen terms
by exploiting the contexts of the observed terms with similar char-
acter n-grams and there are virtually no out-of-vocabulary terms.
The FastText model [2], an effective and efficient sub-word em-
bedding model, simply sums up the character n-gram vectors to
build the word embedding. For highly frequent terms, FastText di-
rectly assigns a vector per word. ELMo [11] is another well-known
character-based embedding model, which in addition, takes into
account the context around the word. In this work, we use FastText
due its direct comparability to traditional word embeddings.

In more traditional retrieval models, Woodland et al. [15] ex-
plore the role of OOV terms for spoken document retrieval, propos-
ing query and document expansion approaches. To the best of
our knowledge there is no existing research on the effect of low-
frequency terms on neural IR models.

Other studies explore related aspects of neural IR models. Pyreddy
et al. [12] investigate the variance and consistency of kernel-based
neural models over various parameter initializations. Zamani et
al. [18] propose a method to skip the re-ranking step, and directly
retrieve documents from an index of sparse representations. In
contrast, in this paper, we analyze the sensitivity of the neural IR
models to the re-ranking threshold parameter, since most recently
proposed neural models are based on the re-ranking mechanism.

3 EXPERIMENT DESIGN

We conduct our experiments on the MS MARCO [1] passage re-
ranking collection. The collection provides a large set of informa-
tional question-style queries from Bing’s search logs, accompanied
by human-annotated relevant/non-relevant passages. Besides train-
ing data, MS MARCO provides a development set — containing
queries and relevance data for evaluation - in two sizes: sample!
and full. In our experiments, we use the queries from the sample as
our validation set and the rest of the full development set as our test
set. In total, the collection consists of 8,841,822 documents, 6,980
queries for validation, and 48,598 queries for test purposes.
Resources. We use GloVe [10] word embeddings with 300 dimen-
sions?, and the FastText model, trained on the Wikipedia corpus of
August 2015, with trigram-character subwords in 200 dimensions.
We create several vocabularies based on varying thresholds to
the collection frequency of terms. In our experiments, we refer to
the set of terms with frequency greater or equal to n, as Voc-n. Voc-
Full uses all the terms in the collection. The details of the resulting

!Provided in the form of evaluation tuples: top1000.dev.tsv
242B lower-cased (CommonCrawl) from: https://nlp.stanford.edu/projects/glove/

Table 1: Left: Details of the vocabularies. Right: Percentage
and absolute number of test set queries with > 1 OOV term

Name # Terms % Covered Size OOV Queries
- Min # Terms % #
Voc-Full 3,525,473 100.0 4.23GB 0 0
Voc-5 542,878 154 651 MB 1.23 596
Voc-10 314,607 89 378MB  1.98 962
Voc-25 169,983 4.8 204 MB 5.07 2464
Voc-50 111,815 3.2 134 MB 8.06 3917
Voc-100 75,805 2.2 91 MB 12.07 5864
FastText 2,950,302 100.0 2.36 GB 0 0

vocabularies, as well as the corresponding statistics of OOV terms,
are shown in Table 1.

Evaluation. We evaluate our models with the main metric for the
MS MARCO ranking challenge: the Mean Reciprocal Rank measure
(MRR), as well as Recall, both at rank 10. Statistical significance
tests are done using a two sided paired ¢-test (p < 0.05).

Neural Retrieval Models. KNRM [16] establishes a similarity match-
ing matrix using the embeddings of query and document terms. The
model then estimates the relevance score based on the outputs of a
set of Gaussian kernel functions, applied on the matching matrix.
CONV-KNRM [3] extends KNRM by adding a Convolutional Neu-
ral Network (CNN) layer on top of the word embedding matrix,
enabling learning word-level n-gram representations.
MatchPyramid [8] ranking model is inspired by deep neural image
processing architectures. Similar to KNRM, the model first computes
the similarity matching matrix, which is used for several stacked
layers of CNN with dynamic max-pooling. Like the two previous
models, this architecture facilitates end-to-end training.

Implementation and Parameter Setting. We use the Anserini [17]
toolkit to compute the BM25, and RM3 models. The model parame-
ters are tuned on the validation set, resulting in k; = 0.6, b = 0.8
for BM25. We observe no significant performance increase for RM3,
therefore we only report BM25 baseline results. The BM25 rankings
are used as a starting point for the neural re-ranking models.

We implement the neural models in PyTorch [9].3 We project all
characters to lower case and apply tokenization using the WordTo-
kenizer provided by AllenNLP [5]. We use the Adam optimizer with
learning rate 0.001, 1 epoch, and early stopping. We use a batch size
of 64, and the maximum word length of queries and documents is
set to 30 and 180, respectively. In all models, the pre-trained word
embeddings are updated during training.

Regarding model-specific parameters, for KNRM and CONV-
KNRM, we set the number of kernels to 11 with the mean values of
the Gaussian kernels varying from —1 to +1 in steps of 0.2 (one extra
kernel is added for exact matching), and standard deviation of 0.1
for all kernels. The dimension of the CNN vectors in CONV-KNRM
is set to 128. In the MatchPyramid model, we set the number of con-
volution layers to 5, each with kernel size 3 X 3 and 16 convolution
channels. For each model, we find the best re-ranking threshold
parameter by extensively tuning it on a range from 1 to 300, based
on the MRR results of the validation set.

30ur code is available at https://github.com/sebastian-hofstaetter/sigir19-neural-ir
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Table 2: Evaluation results using different vocabulary sizes & best re-ranking threshold on the validation set.
Top: best performance on the validation set. Bottom: results on the test set. The best results per model are shown in bold

Model Voc-100 Voc-50 Voc-25 Voc-10 Voc-5 Voc-Full FastText
MRR Recall MRR Recall MRR Recall MRR Recall MRR Recall MRR Recall MRR Recall
) MatchPyramid 0.220 0.423  0.218 0.427 0.224 0.442 0.234 0.446 0.231 0.459 0.239 0.467 0.245 0.477
§ KNRM 0.209 0.404 0.209 0.404 0.209 0.404 0.221 0.454 0.224 0457 0.232 0.467 0.230 0.456
CONV-KNRM 0.253 0.469 0.249 0474 0.256 0.480 0.261 0.492 0.266 0.504 0.276 0.526 0.278 0.519
- MatchPyramid 0.223 0426 0.227 0431 0.221 0.442 0.237 0458 0.232 0458 0.239 0465 0.247 0.472
E KNRM 0.210  0.407 0.211  0.407 0.211 0.407 0.222 0.453 0.225 0.455 0.235 0.468 0.227 0.451
CONV-KNRM 0.248 0472 0.249 0470 0.250 0.481 0.260 0.488 0.264 0.503 0.273 0.518 0.275 0.519
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Figure 1: Sensitivity of the models to the re-ranking threshold parameter for different vocabularies. The best performing

parameter setting are indicated on the plots.

4 EFFECT OF THE VOCABULARY SIZE

The performance of the neural ranking models, trained on various
vocabularies as well as on FastText embeddings, on both validation
and test sets are shown in Table 2. We calculate tests of significance
between the pairs of rankings, and mention the results in the fol-
lowing. We also evaluate BM25, achieving an MRR of 0.192 and
Recall of 0.407 on the test set. Consistent with previous studies,
the BM25 model is outperformed by all neural ranking models, and
CONV-KNRM shows the best overall performance [3, 8, 16].

Comparing the results over each model, in two out of the three
models, the FastText embedding significantly outperforms Voc-Full,
while FastText only requires 55% of the memory needed by Voc-
Full (based on the statistics in Table 1). Looking at the results of
the models with various vocabulary sizes, using Voc-Full brings
significant advantages in comparison to using smaller vocabularies.
However, their differences become marginal, especially for the
models with Voc-5 and Voc-10 vocabulary sets, taking into account
that the embeddings of the Voc-5 and Voc-10 vocabularies require
much less memory space, namely only 15% (Voc-5) and 8% (Voc-10)
of the memory used by the Voc-Full embeddings.

While the reported results are based on an exhaustive tuning of
hyper-parameters on the validation set, in the following we study
the sensitivity of the models to the re-ranking threshold, an im-
portant — but not well studied — hyper-parameter of the neural IR

models. Figure 1 demonstrates the sensitivity of the three neural IR
models to the changes of the re-ranking threshold parameter. Look-
ing at the trends in the plots, as the performance improves, either
by using a better performing model or a bigger vocabulary size, the
models become less sensitive to the re-ranking threshold. Such that
the optimal re-ranking thresholds also become larger, indicating
that the model is able to effectively generalize over a larger set of
non-relevant documents. Since increasing the re-ranking threshold
mostly adds non-relevant documents. On the other hand, models
with lower performances (MatchPyramid and KNRM), especially
with smaller vocabularies, are highly sensitive to the re-ranking
threshold. For such models, an exhaustive parameter search pro-
vides a significant enhancement. This indicates the importance
of well-tuning the re-ranking threshold parameter, especially in
scenarios with constrained memory resources.

Finally, to confirm whether the effects of tuning the re-ranking
threshold on the validation set is also transferred to the test set,
we compare the results on the validation and test set in Table 2.
As shown, even on models with high sensitivity to the re-ranking
threshold, the results are highly similar, indicating the effectiveness
of extensive tuning of the re-ranking threshold*.

4We should note that the cause of this effect might be due to high underlying similarities
between the validation and test set of the particular collection. However, further
investigations on this aspect is out of the scope of this paper.
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Figure 2: MRR differences of the models, trained on the Fast-
Text embeddings and the embeddings with full vocabular-
ies, over the queries with minimum collection frequency of
their terms smaller or equal to the X-axis

(red = FastText is better, blue=Vocab-Full is better)

5 QUERIES WITH LOW-FREQUENCY TERMS

In this section, we take a closer look at the differences between
the models trained on the traditional embeddings (GloVe in our
experiments) using different vocabularies, and the ones trained on
the FastText embeddings.

Figure 2 shows the MRR differences of the neural ranking models,
using the traditional embeddings with the Voc-Full vocabularies,
to the ones using FastText, over the range of collection frequencies.
For each point on the X axes, we calculate the MRR values for the
queries, which at least have one term with collection frequency
of equal to or smaller than the corresponding value of that point.
The figure reveals strong contrast between the area, related to the
queries with very low-frequency terms, and the rest, indicating
higher performances of the models with FastText for these queries.

Let us have a closer look at this area. Figure 3 shows the MRR of
the CONV-KNRM models, using the traditional word embeddings
with different vocabularies, as well as the one using the FastText
embeddings, for queries with very infrequent terms. The MRR
values are calculated in the same fashion as in Figure 2.

As shown, the model with FastText by a large margin improves
all other models, especially until a collection frequency of around
10 to 15. Interestingly, BM25, as an exact term matching model,
shows better performance than neural IR models with traditional
embeddings, especially on very low values. We argue that the low
performance of the models with traditional embeddings is due
to the lack of enough contexts for learning meaningful represen-
tations, which causes ineffective semantic similarity estimations.
On the other hand, the subword embeddings exploit the contexts
of other observed terms in the collection with similar character
n-grams. Therefore, the neural ranking models with subword em-
beddings still benefit from meaningful semantic relations between
very infrequent words, outperforming the ranking models based
on traditional embeddings as well as exact matching.

6 CONCLUSION

Our work takes a first step to understanding the effects of infrequent
terms in neural ranking models, and exploit novel representation
learning approaches to address it. We first study the sensitivity
of the neural IR models to their vocabulary size, pointing out the
importance of fine-grained tuning of the re-ranking threshold. We
then investigate the effects of using subword embeddings in neural
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Figure 3: MRR results of CONV-KNRM over the queries with
at least one term with collection frequency smaller than or
equal to the values on the X-axis

IR models, showing that using these embeddings in particular brings
remarkable improvements to the performance of queries containing
very low-frequency terms. As future work, we aim to pursue the
investigations of this study into the area of query performance
prediction of neural IR models.
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