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ABSTRACT
In many domains of information retrieval, system estimates
of document relevance are based on multidimensional qual-
ity criteria that have to be accommodated in a unidimen-
sional result ranking. Current solutions to this challenge are
often inconsistent with the formal probabilistic framework
in which constituent scores were estimated, or use sophis-
ticated learning methods that make it difficult for humans
to understand the origin of the final ranking. To address
these issues, we introduce the use of copulas, a powerful sta-
tistical framework for modeling complex multi-dimensional
dependencies, to information retrieval tasks. We provide a
formal background to copulas and demonstrate their effec-
tiveness on standard IR tasks such as combining multidimen-
sional relevance estimates and fusion of results from multi-
ple search engines. We introduce copula-based versions of
standard relevance estimators and fusion methods and show
that these lead to significant performance improvements on
several tasks, as evaluated on large-scale standard corpora,
compared to their non-copula counterparts. We also inves-
tigate criteria for understanding the likely effect of using
copula models in a given retrieval scenario.

Categories and Subject Descriptors
Information Systems [Information Retrieval]: Retrieval
models

Keywords
Relevance models; Multivariate relevance; Ranking; Proba-
bilistic framework; Data fusion.

1. INTRODUCTION
In response to user queries, today’s search systems typi-

cally return lists of documents ranked by system estimates
of relevance. In traditional IR retrieval models, each doc-
ument’s relevance towards the query is expressed as term
overlap between query and document [42]. Early on, re-
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searchers began exploring alternative, non-topical document
quality criteria such as document recency, credibility or mon-
etary cost. More recently, through a combination of im-
proved algorithms and greatly increased data scale, signif-
icant gains in ranking quality and user satisfaction based
on employing non-topical factors such as textual complexity
[12] or suitability for children [17] have begun influencing
the ranking process. Given a scenario such as child-friendly
information search, non-topical quality criteria can clearly
have a strong influence on usefulness of a document for a
specific user. A perfectly relevant document that is not
understandable due its complex sentence structure or ex-
cessive use of jargon will have significantly diminished user
relevance.

Beyond the value of individual relevance factors, there
can be complex, non-linear dependencies between relevance
factors. For example, relevance criteria such as topicality
and credibility might appear independent for some docu-
ment subsets, but extreme values in one dimension may in-
fluence the other in a way that is not easily captured by
state-of-the-art approaches. As a concrete example, take
TREC 2010’s faceted blog distillation task [32], that aims
at retrieving topically relevant non-factual blog feeds. Here,
the relevance space has two dimensions: topicality and sub-
jectivity. Figure 1 shows the distribution of relevance scores
for Topic 1171, “mysql”, across these two relevance dimen-
sions. We can note an apparent correlation in the lower left
part of the graph that weakens as scores increase. To under-
line this, we computed Pearson’s ρ between the two dimen-
sions for the lower score third (ρ = 0.37), the upper region
(ρ = −0.4), as well as the overall distribution (ρ = 0.18).
Apparently, the dependency structure of the joint distribu-
tion of relevance, in this case, is not easily described by a
linear model. Consequently, we can expect dissatisfying per-
formance of linear combination models. And, indeed, when
inspecting the performance of a linear combination model
with empirically learned mixture parameters λ, Topic 1171
receives an average precision of only 0.14, well below the
method’s average across all topics of 0.25. In the course of
this work, we will discuss practical means of addressing cases
like the present one and will finally revisit this example to
demonstrate the effect of our proposed method.

While the machine learning, information retrieval, data
mining and natural language processing communities have
significant expertise in estimating topical document rele-
vance and additional criteria in isolation, the commonly ap-
plied combination schemes have tended to be ad hoc and ig-
nore the problem of modeling complex, multi-dimension de-
pendencies. In practice, they follow statically weighted lin-
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Figure 1: Distribution of bivariate relevance scores
for TREC 2010 Blog Track Topic 1171, “mysql”.

ear combinations with empirically determined mixture pa-
rameters [42] or deploy sophisticated learning to rank tech-
niques that tend to offer only limited insight to humans
about why they were weighted highly for relevance. Ideally,
we would demand realistic, yet formally-grounded combina-
tion schemes that can lead to results that are both effective
and with human-interpretable justification.

In a different context, the field of quantitative risk man-
agement has devised copulas, a flexible, varied class of prob-
ability density functions that are designed to capture rich,
non-linear dependencies efficiently in multi-dimensional dis-
tributions. Copulas work by decoupling the marginal distri-
butions of the data from the underlying dependency struc-
ture of the joint distribution. In particular, copulas can
account for so-called tail dependencies, i.e., dependencies
that play up at the extreme values of the interacting distri-
butions. As an example, let us consider two commodities
traded on the stock market, such as rare earth metals and
pork bellies. The two commodities are sufficiently differ-
ent to make the related market segments quasi-independent.
However, extreme market situations have been shown to
cause investor panics that reach across otherwise indepen-
dent segments and cause previously unseen interrelation-
ships [9].

This work makes three contributions to the state of the
art in relevance modelling. (1) We give a detailed introduc-
tion to the formal framework of copulas and describe how to
estimate them from empirical data. (2) Based on a number
of sizeable standard data sets such as the Blogs08 collection
[32], we demonstrate the merit of using copulas for multivari-
ate relevance estimation. (3) In a related effort, we address
the task of score fusion based on historic submissions to the
TREC ad hoc task.
The remainder of this paper is structured as follows: Sec-

tion 2 gives a historic overview of IR relevance frameworks,
prior work on multidimensional relevance models, score fu-
sion approaches, as well as, examples of copula applications
from different fields. Section 3 formally introduces the the-
oretical foundation of copulas and details key techniques in
their application. In Sections 4 and 5 we demonstrate their
merit at the tasks of estimating multidimensional relevance
scores as well as fusing prior TREC runs. Section 6 further
discusses the experimental results and aims at identifying
those domains of IR for which copulas are most promising.
Section 7 concludes the paper with a concise summary of
our findings.

2. RELATED WORK
Over the past decades, a wide range of partially over-

lapping relevance frameworks have been proposed, a few
prominent examples include [44, 22, 34, 8]. They unani-
mously consider relevance as a complex, potentially multi-
dimensional concept that may be composed from a number
of constituents. In the further course of this section, we will
focus on the practical implementation of formal relevance
estimation schemes employed in information retrieval and
related disciplines. Schamber et al. [45] radically revised the
definition of relevance, causing a growing interest in proba-
bilistic relevance modelling in the research community. First
openly applied at the third TREC competition, the BM25
retrieval model [43] represents a performance landmark that
is still valid today (with slight variations such as the 2004
integration of multiple weighted fields [42]). In 1996, Persin
et al. [38] introduced the idea of retrieval result lists ranked
by their probability of relevance, as an alternative to the
previously dominant binary retrieval scenario. Two years
later, Ponte and Croft proposed the use of language mod-
elling techniques to determine topical relevance [39]. One of
the first notions of non-topical relevance was expressed in
Kleinberg’s work on hubs and authorities [26] in which the
author introduces two document-specific relevance notions
independent of the query. Lavrenko and Croft [28, 29] pur-
sued a line of work on dedicated relevance models.
While the formal combination of several individual relevance
facets in one model has not been extensively studied, there
has been an interesting thread of research on score fusion.
The task is to combine the result rankings of multiple inde-
pendent retrieval systems in order to compensate for local
inaccuracies of single engines. Early approaches to the task
were based on evidence aggregation in the form of products
and sums of scores across individual systems [19]. The fused
ranking is based on the absolute value of the cross-system ag-
gregates. Vogt et al. [51] first introduced linear interpolation
of multiple model rankings for system fusion. Aslam and
Montague [5] proposed a probabilistic rank-based method
for direct combination of multiple engines. Later on, they
devised a similar method based on a majority voting scheme
between various retrieval systems [35]. [36] proposed a score
normalization scheme that is more robust to outliers in the
distribution of relevance than the previously used min/max
technique. There has been an extensive body of work on
estimating the distribution of relevance scores for document
ranking. Recent examples include the work by Arampatzis
and Stephenson [4], Kanoulas et al. [25], and, Cummins [14].
Manmatha et al. [33] estimated a search engine’s score distri-
bution as a mixture of normal and exponential distributions,
for relevant and non-relevant documents respectively. They

664



used the resulting distributions for score fusion across mul-
tiple engines, but did not attempt to model dependencies
in the joint score distribution, instead treating the scores as
independent and averaging probabilities, or discarding ‘bad’
engines altogether.
In 2002, Wu and Crestani [52] introduced the first of what
would become a group of fusion approaches that define an
explicit weighting scheme under which the original result
lists are combined. [7] and [15] employ various quality no-
tions such as the degree to which a document satisfies a
given relevance criterion to dynamically adapt the weight-
ing scheme to the underlying distribution of relevance. In
2005, Craswell et al. investigated relevance model combi-
nation by linearly combining constituent scores in the log
domain [13]. Tsikrika and Lalmas applied Dempster-Shafer
theory for the aggregation of independent relevance criteria
in web retrieval in the form of belief functions [49]. Gerani
et al. [21] propose non-linear score transformations prior to
the standard weighted linear combination step. Their solid
results demonstrate the need for models whose capabilities
go beyond linear dependency structures between relevance
dimensions.
In recent years, the variety of IR applications has become
significantly more diverse. As a consequence, universal rele-
vance models have become less viable in many areas. Tasks
such as legal IR, expert finding, opinion detection or the re-
trieval of very short documents (e.g., tweets) have brought
forward strongly customised relevance models tailored to-
wards satisfying a given task (e.g., [24, 6]). Especially for the
retrieval of structured (XML) documents, score combina-
tion schemes are of central importance to combine evidence
across multiple structural fields within a document. De-
spite the numerous potential issues pointed out by Robert-
son et al. [42], most state-of-the-art approaches to XML re-
trieval rely on linear models [31]. An advance towards the
formal combination of several independent relevance crite-
ria in the form of prior probabilities for language models
has been made by Kraaij et al. [27] for the task of entry
page search. To date, however, most universally applica-
ble relevance models still rely on pure linear combinations
of relevance criteria that disregard the underlying data dis-
tribution or potential dependencies between the considered
dimensions.
Learning to rank (L2R) has been established as an alterna-
tive approach for signal combination. The aim is to apply
machine learning methods to either directly infer a docu-
ment ranking or a ranking function from a wide range of
features, potentially including the previously-discussed rele-
vance criteria [10, 40, 30]. The downside of this approach is
that the resulting models tend to yield only limited insight
for humans. The classic approach of developing a unify-
ing formal retrieval model would in our view provide better
means to increase not just overall performance, but also our
qualitative understanding of the problem domain.
By introducing copulas for information retrieval, this work
proposes a way for closing the gap between linear com-
binations (that break with the probabilistic framework in
which the constituent scores were estimated) and non-linear
machine-learned models (that offer only limited insight to
scientists and users).
Copulas have been traditionally applied for risk analyses in
portfolio management [18] as well as derivatives pricing [9]
in quantitative finance. Recently, however, there are several
successful examples from unrelated disciplines. Renard et

al. estimate water flow behaviour based on Gaussian copu-
las [41]. Onken et al. apply copulas for spike count analy-
sis in neuroscience [37]. In meteorology, copulas have been
used to combine very high-dimensional observations for the
task of climate process modelling [47]. To the best of our
knowledge, there has been no prior application of the copula
framework to information retrieval problems.

3. COPULAS
At this point, we will give a brief introduction of the gen-

eral theoretical framework of copulas, before applying them
to various IR tasks in subsequent sections. For a more com-
prehensive overview, please refer to [46] for more detail and
pointers to further reading.
The term copula was first introduced by Sklar [48] to de-
scribe multivariate cumulative distribution functions (cdfs)
that allow for a formal decoupling of observations from de-
pendency structures. Formally, given

X = (x1, x2, . . . , xk)

a k-dimensional random vector with continuous margins

Fk(x) = P[Xk ≤ x]

we can map our observations to the unit cube [0, 1]k as

U = (u1, u2, . . . uk) = (F1(x1), F2(x2), . . . Fk(xk)).

This is where our copulas come into play. A k-dimensional
copula C describes the joint cumulative distribution function
of random vector U with uniform margins.

C : [0, 1]k → [0, 1]

This approach has two obvious practical benefits: (1) Sepa-
rating marginals and dependency structure allows for more
straightforward estimation or approximation of each com-
ponent in isolation. (2) An explicit model of dependency
is scale-invariant. The copula describes a reference case of
dependency on the unit cube [0, 1]k that can be applied to
arbitrary random vectors without further adjustment.
A number of key properties make copulas an appealing the-
oretical framework for a wide number of applications, so we
summarize those now.

• Like all cdfs, a copula C(u1, u2, . . . , uk) is increasing
in each component ui

• A marginal component ui can be isolated by setting
all remaining components to 1:

C(1, . . . , 1, ui, 1, . . . , 1) = ui

• If a single component ui in U is zero, the entire copula
is zero:

C(u1, . . . , ui−1, 0, ui+1, . . . , uk) = 0

• Most importantly, we can assume general applicability
of the copula framework, since, as a consequence of
Sklar’s Theorem [48], for each k-dimensional cdf F and
all xi in [−∞,∞] and 1 ≤ i ≤ k, there exists a copula
C with

F (x1, . . . , xk) = C(F1(x1), . . . , Fk(xk))
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3.1 Extreme conditions
Before applying the copula framework to problems in in-

formation retrieval, let us visit a number of extreme con-
ditions of dependency that frequently occur in IR scenar-
ios. (1) Independence of observations is a frequently as-
sumed simplification in IR theory that leads to convenient
(if näıve) probabilistic models. In the copula framework,
independence of events can be captured by the so-called in-
dependence copula Cindep:

Cindep(U) = exp(−
k∑
i=1

− log ui)

which is equivalent to the product across all constituent
probabilities in U . (2) Co-monotonicity describes the
case of perfect positive correlation between observations u:

CcoMono(U) = min{u1, . . . , uk}

(3) counter-monotonicity of observations is given in the
opposite case of perfect negative correlation:

CcounterMono(U) = max{
k∑
i=1

ui + 1− k, 0}

Consequently, each copula lies within the so-called Fréchet-
Höffding bounds [23]:

CcounterMono(U) ≤ C(U) ≤ CcoMono(U)

3.2 Copula families
After having covered the foundations of copula theory let

us inspect some concrete examples of copulas that will be
used in the course of this work. Three general families of
standard copulas have been proposed in the literature, whose
corresponding equations are given right after their introduc-
tion in this paragraph: (1) Elliptical copulas are directly
derived from known distributions and are based on stan-
dard distribution functions such as the Gaussian distribution
or Student’s t distribution. Equation 1 shows the Gaus-
sian copula that requires the observed covariance matrix
Σ ∈ Rk×k as a parameter. Φ denotes the cdf of a standard
normal distribution and Φ−1 its inverse. (2) Archimedean
copulas are popular as they can be explicitly stated (note
that due to their distribution dependency that is not the case
for elliptical copulas) and typically depend on only a single
degree of freedom. The parameter θ expresses the strength
of dependency in the model. Equation 2 shows the Clayton
copula whose θ-range is [−1,∞)\{0}. θ = −1 represents
counter-monotonicity, θ → 0 gives the independence copula
and θ → ∞ approaches co-monotonicity. Finally, (3) Ex-
treme value copulas are robust in cases of extreme obser-
vations. The Gumbel copula (Equation 3) has a parameter
space of θ in [1,∞). For θ = 1 we obtain the independence
copula, and, for θ →∞ we approach co-monotonicity.

CGaussian(U) = ΦΣ(Φ−1(u1), . . . ,Φ−1(uk)) (1)

CClayton(U) = (1 + θ(

k∑
i=1

1

θ
(u−θ
i − 1)))

−1
θ (2)

CGumbel(U) = exp(−(

k∑
i=1

(− log(ui))
θ)

1
θ ) (3)

Figure 3.2 shows contour plots of a number of bivariate stan-
dard copulas. The concrete choice of copula family and
instantiation has been frequently reported to depend on
the application domain [46]. If no prior knowledge about
the dependency structure, e.g., prevalence of asymptotic or
tail dependencies, is available, practitioners often resort to
goodness-of-fit tests or measures of tail dependency in order
to choose an appropriate model. We will describe the use of
these techniques in the subsequent sections when applying
copulas for information retrieval problems.

3.3 Fitting copulas to observations
In the case of elliptical copulas, the fitting process is lim-

ited to calculating means and covariance matrices from the
available observations. Here, the only degree of freedom is
the concrete choice of distribution function (e.g., Gaussian
vs. Student) that best approximates the original distribution
that generated the observations. In the non-elliptical case,
the task is to determine optimal settings of θ. Commonly,
this is achieved by means of maximum likelihood estimates
based on the available observations. This is also the ap-
proach chosen in this work. It should be noted that there
are methods for direct empirical estimations of entire copula
functions. The interested reader can find a good overview by
Charpentier et al. [11] as a starting point for this line of re-
search, the inclusion of which would however go beyond the
scope of this initial exploration of copulas for information
retrieval.

4. RELEVANCE ESTIMATION
In the previous section, we described the theoretical foun-

dations of copulas including concrete ways of computing
C(U) from multivariate observations U . We now detail their
application for relevance estimation in information retrieval.
First, we separately estimate the probability of relevance

P
(k)
rel (d) and non-relevance P

(k)
non(d) for a document d, under

each of the k criteria (dimensions) – for example, topicality,
recency, readability, etc. Next, we assume random observa-
tions Urel and Unon to derive from these distributions and
base two distinct copulas, Crel and Cnon on them.
Recall that these copulas should capture the dependencies
between relevance criteria, in either the relevant (Crel) or the
non-relevant (Cnon) documents retrieved. Since it is difficult
to predict where these dependencies have the most effect, it
is natural to consider three different general approaches of
combining multivariate observation scores U into a single
probability of relevance that can be used for resource rank-
ing. (1) CPOS(Urel) multiplies the independent likelihood
of observing Urel with the relevance copula Crel , capturing
only dependencies between the likelihoods of relevance. (2)
CNEG(Urel , Unon) normalizes the probability of relevance by
the non-relevance copula Cnon(Unon), capturing only the de-
pendencies between the likelihoods of non-relevance. (3)
CODDS(Urel , Unon), finally, multiplies the probability of rel-
evance by the ratio of the two copulas, modelling simulta-
neously the dependencies between both previous notions.

CPOS(Urel) = Crel(Urel)

k∏
i=1

urel,i

CNEG(Urel , Unon) =

∏k
i=1 urel,i

Cnon(Unon)
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Figure 2: Examples of bivariate copula contour plots. (a) Gaussian copula, (b) Clayton copula with θ = 2.0,
(c) Gumbel copula with θ = 2.0.

CODDS(Urel , Unon) =
Crel(Urel)

Cnon(Unon)

k∏
i=1

urel,i

As performance baselines, we will compare to three popu-
lar combination methods from the literature: (1) SUM (Urel)
sums up the relevance scores across all criteria k and uses
the sum as the final ranking criterion [19]. (2) PROD(Urel)
builds the product across all constituents [19]. Probabilisti-
cally, this combination scheme assumes independence across
all criteria and can be expected to be too näıve in some set-
tings where dependence is given. (3) Weighted linear com-
binations LINΛ(Urel) build a weighted sum of constituents
urel,i with mixture parameters λi optimized by means of a
parameter sweep with step size 0.1 [51]. It should be noted
that all optimizations and parameter estimations, both for
the baselines as well as for the copula models are conducted
on designated training sets that do not overlap with the fi-
nal test sets. We relied on the original training portion of
the respective corpora. In the case that the original corpus
did not specify a dedicated training set, we used a stratified
90%/10% split.

SUM (Urel) =

k∑
i=1

urel,i

PROD(Urel) =

k∏
i=1

urel,i

LINΛ(Urel) =

k∑
i=1

λiurel,i

Based on three different standard datasets and tasks, we
will highlight the merit of using copulas over the traditional
approaches. Each of the settings specifies 2 individual rele-
vance criteria (k = 2) which are crucial for user satisfaction
given the retrieval task. Table 1 gives a high-level overview
of the relevant corpora that we used. Each of them will be
described in more detail in the three following sections. De-
pending on the strength of tail dependency in the data, we
will see varying improvements for the three inspected set-
tings. Comparable as the scenarios appear, there seem to
be significant underlying differences in the distribution of
relevant documents that influence the benefit from the use

Table 1: Overview of experimental corpora.
ID # docs # topics # labels year

Blogs08 1.3M 100 38.2k 2008
Delicious 339k 180 3.8k 2012

ODP 22k 30 1k 2009

of copulas. In Section 6, we will dedicate some room to a de-
tailed investigation of when the use of copula-based retrieval
models is most promising.

4.1 Opinionated blogs
When conducting marketing analyses for businesses, re-

searching customer reviews of products or gauging political
trends based on voter opinions, it can be desirable to fo-
cus the search process on subjective, non-factual documents.
The Text REtrieval Conference (TREC) accounted for this
task within the confines of their Blog Track between the
years 2006 and 2010 [32]. The aim of the task is to retrieve
blog feeds that are both topically relevant and opinionated.
Our experimental corpus for this task is the Blogs08 collec-
tion specifically created for the venue. The dataset consists
of 1.3 million blog feeds and is annotated by more than 38k
manually created labels contributed by NIST assessors.

Each document is represented as a two-component vector

U
(2)
rel . The first component refers to the document’s topical

relevance given the query and the second represents its de-
gree of opinionatedness. In order for a document to be con-
sidered relevant according to the judges’ assessments, it has
to satisfy both conditions. Topical relevance was estimated
by a standard BM25 model and opinionatedness was deter-
mined using the output of a state-of-the-art open source clas-
sifier [1]. After an initial evaluation of the domain, we chose
Clayton copulas (Equation 2) to represent the joint distri-
bution of topicality and opinionatedness. Table 2 shows a
juxtaposition of performance scores for the baselines as well
as the various copula methods. The highest observed perfor-
mance per metric is highlighted by the use of bold typeface,
statistically significant improvements (measured by means
of a Wilcoxon signed-rank test at α = 0.05-level) over all
competing approaches are denoted by an asterisk. Of the
baseline methods, the score product PROD performs best.
However, introducing the use of copulas, we observe that the
highest performance was achieved using the CPOS copula,
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Table 2: Copula-based relevance estimation perfor-
mance for opinionated blogs (k = 2).

Method P@5 P@10 p@100 BPREF MRR MAP

PROD 0.413 0.360 0.181 0.289 0.692 0.275
SUM 0.400 0.333 0.154 0.255 0.689 0.238
LIN 0.387 0.333 0.162 0.262 0.689 0.245

CPOS 0.413 0.400* 0.182 0.306* 0.692 0.287*
CNEG 0.373 0.373 0.181 0.290 0.545 0.245
CODDS 0.373 0.360 0.182 0.283 0.544 0.242

which gave statistically significant gains in MAP, Bpref and
precision at rank 10 over all the baseline methods.

At this point, we revisit the example query (Topic 1171)
that was discussed in the introduction and depicted in Fig-
ure 1. For this topic, we observed a clear non-linear depen-
dency structure alongside a lower-than-average linear combi-
nation performance of AP = 0.14. When applying CPOS to
the topic, however, we obtain AP = 0.22, an improvement
of over 50%.

4.2 Personalized bookmarks
Finding and re-finding resources on the Internet are fre-

quently accompanied and aided by bookmarking. What
started as a local in-browser navigation aid, has in recent
years become an active pillar of the social web society. Col-
laborative bookmarking platforms such as Delicious, Furl,
or Simpy allow users to maintain an online profile along
with bookmarks that can be shared among friends and col-
laboratively annotated by the user community. Research
into tagging behaviour [2] found that a significant amount
of the tags assigned to shared media items and bookmarks
are of subjective nature and do not necessarily serve as ob-
jective topical descriptors of the content. This finding sug-
gests that bookmarking has a strong personal aspect which
we will cater for in our experiment. Vallet et al. [50] com-
piled a collection of more than 300k Delicious bookmarks
and several million tags to describe them. For a share of 3.8k
bookmarks and 180 topics, the authors collected manual rel-
evance assessments along two dimensions, topical relevance
of the bookmark given the topic and personal relevance of
the bookmark for the user. This dataset is one of the very
few corpora whose personalized relevance judgements were
made by the actual users being profiled. We conduct a re-
trieval experiment in which we estimate topical and personal
relevance for each document and use Gumbel copula models
to model the joint distribution of facets. The set of rele-
vant documents comprises only those bookmarks that satisfy
both criteria and were judged relevant in terms of topicality
and personal relevance. Table 3 shows an overview of the
resulting retrieval performances. CNEG stands out as the
strongest copula-based model but the overall ranking of sys-
tems depends on the concrete metrics evaluated. For some
metrics such as precision at rank 10 and MRR, the linear
combination baseline prevails, BPREF and precision at 5
documents favour CNEG.

4.3 Child-friendly websites
The third application domain that we will inspect is con-

cerned with the retrieval of child-friendly websites. Chil-
dren, especially at a young age, are an audience with specific
needs that deviate significantly from those of standard web
users. Even for adult users it has been shown that focussing

Table 3: Copula-based relevance estimation perfor-
mance for personalized bookmarks (k = 2).

Method P@5 P@10 p@100 BPREF MRR MAP

PROD 0.084 0.079 0.011 0.051 0.192 0.043
SUM 0.095 0.095 0.011 0.071 0.192 0.055
LIN 0.126 0.100* 0.011 0.077 0.219* 0.063

CPOS 0.105 0.068 0.01 0.056 0.190 0.047
CNEG 0.137* 0.090 0.010 0.079* 0.184 0.065
CODDS 0.116 0.074 0.01 0.066 0.202 0.058

Table 4: Copula-based relevance estimation perfor-
mance for child-friendly websites (k = 2).
Method P@5 P@10 p@100 BPREF MRR MAP

PROD 0.240 0.143 0.051 0.221 0.349 0.196
SUM 0.246 0.157 0.052 0.213 0.340 0.200
LIN 0.320* 0.187* 0.071* 0.275* 0.357 0.235*

CPOS 0.238 0.140 0.053 0.215 0.351 0.200
CNEG 0.242 0.140 0.048 0.223 0.349 0.194
CODDS 0.241 0.143 0.052 0.220 0.349 0.196

the retrieval process on material of appropriate reading level
can benefit user satisfaction [12]. In the case of children, this
tendency can be expected to be even more pronounced since
young users show very different modes of interaction with
search engines that reflect their specific cognitive and motor
capabilities [16]. Consequently, dedicated web search en-
gines for children should focus their result sets on topically
relevant, yet age-appropriate documents. [17] constructed
a corpus of 22k web pages, 1,000 of which were manually
annotated in terms of topical relevance towards a query as
well as the document’s likelihood of suitability for children.
According to the authors, the class of suitable documents en-
compasses those pages that were topically relevant for chil-
dren, presented in a fun and engaging way and textually not
too complex to be understood. In our retrieval experiment,
we account for both criteria and require documents to be
both on topic as well as suitable for children in order to be
considered relevant. Table 4 gives an overview of the result-
ing retrieval performance. In this setting, the various copula
models show comparable result quality as the non paramet-
ric baselines. Linear combinations with empirically learned
weights, however, were consistently the strongest method.
We intend to explore the reasons for this in future work.
However we note that the distribution of child-suitable rat-
ings has a very large mode at zero, with only a small num-
ber of non-zero scores taking a limited number of possible
discrete values - limiting the amount of useful dependency
information available that copulas could exploit.

5. SCORE FUSION
Previously, we investigated the usefulness of copulas for

modelling multivariate document relevance scores based on
a number of (largely) orthogonal document quality criteria.
Now, we will address a different, closely related problem:
score fusion (also known as an instance of data fusion). In
this setting, rather than estimating document quality from
the documents, we attempt to combine the output of several
independent retrieval systems into one holistic ranking. This
challenge is often encountered in the domains of metasearch
or search engine fusion. To evaluate the score fusion perfor-
mance of copula-based methods, we use historic submissions
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to the TREC Adhoc and Web tracks. We investigate 6 years
of TREC (1995 - 2000) and fuse the document relevance
scores produced by several of the original participating sys-
tems. Intuitively, this task closely resembles the previously
addressed relevance estimation based on individual docu-
ment properties. In practice, as we will show, the scenario
differs from direct relevance estimation in that retrieval sys-
tems rely on overlapping notions of document quality (e.g., a
variant of tf/idf scoring) and are therefore assumed to show
stronger inter-criteria dependencies than individual facets
of document quality might. Systematically, however, we ad-

dress a set of document-level scores U
(k)
rel , originating from k

retrieval systems, exactly in the same way as we did docu-
ment quality criteria in the previous section.
As performance baselines, we will rely on two popular score
fusion schemes, CombSUM and CombMNZ [19]. CombSUM
adds up the scores of all k constituent retrieval models and
uses the resulting sum as a new document score. CombMNZ
tries to account for score outliers by multiplying the cross-
system sum by NZ (U ), the number of non-zero constituent
scores.

CombSUM (Urel) =

k∑
i=1

urel,i

CombMNZ (Urel) = NZ (Urel)

k∑
i=1

urel,i

We introduce statistically principled, copula-based exten-
sions of these established baseline methods: correspond-
ing to CombSUM and CombMNZ, we define CopSUM and
CopMNZ that normalize the respective baseline methods by
the non-relevance copula.

CopSUM (Urel , Unon) =

∑k
i=1 urel,i

Cnon(Unon)

CopMNZ (Urel , Unon) =
NZ (Urel)

∑k
i=1 urel,i

Cnon(Unon)

Due to the close relationship to the baseline methods, the
effect of introducing copulas is easily measurable. Based on
empirical evidence, we employ Clayton copulas to estimate
Cnon(Unon).

Table 5 compares the baselines and copula methods in
terms of MAP gain over the best, worst and median historic
system run that were fused. Each performance score is aver-
aged over 200 repetitions of randomly selecting k individual
runs with k ranging from 2 to 10 for each year of TREC. Sta-
tistically significant improvements over the respective base-
line method, i.e. of CopSUM over CombSUM and CopMNZ
over CombMNZ, are determined by a Wilcoxon signed-rank
test at α = 0.05 level and are denoted by an asterisk.

Regarding the baseline methods, CombSUM and CombMNZ
perform equally well on average, but with a clear dataset
bias. On TREC 4, 8 and 9, CombSUM performs consistently
better than CombMNZ. For TREC 5, 6 and 7, the inverse is
true. With the exception of TREC 4, the fused rankings do
not match the performance of the single strongest run that
contributed to the fusion.

Introducing the copula methods led to consistent improve-
ments over their non-copula baseline counterparts. In 104
out of 168 cases, the copula-based fusion methods gave sta-
tistically significant gains, with only 14 out 168 performing

worse than the corresponding baseline method. The copula-
based methods achieved, on average, 7% gains over the cor-
responding baseline when comparing to the strongest fused
system, 4% gain on median systems and 2% gain on the
weakest systems.

Fusion robustness
There are significant differences in fusion effectiveness be-
tween individual editions of TREC. Comparing TREC 4 and
TREC 6, for example, we observe that TREC 6 fusion re-
sults typically showcase performance losses in comparison
to the best original run and very high gains for the weakest
systems. We seek an explanation in the imbalance in per-
formance of the original systems. Very weak systems have
the potential of decreasing the overall quality of the fused
result list by boosting the scores of non-relevant documents.
As the number of very weak systems increases, so does the
chance for performance losses introduced by fusion. When
inspecting the number weak submissions (defined as having
an MAP score that is at least 2 standard deviations lower
than the average score across all participants) included in
our fusion experiments, we find that, indeed, our TREC
6 sample includes ∼27% more weak systems than that of
TREC 4.

In order to further investigate the influence of weak runs
on overall fusion performance and to measure the proposed
methods’ robustness against this effect, we turn to the 10-
system fusion scenario and inject more and more weak sys-
tems among the regular ones. Figure 3 shows how the fusion
improvement over the single strongest system of TREC 4 is
affected as the number of weak submissions ranges from 0
to 9 out of 10. As before, each data point is an average
across 200 fusions of randomly drawn runs. In the ideal set-
ting, in which there are no weak systems, we note higher
performance gains than in the uncontrolled scenario that
was shown in Table 5. As the number of weak systems in-
jected into the fusion increases, performance scores quickly
drop. As noted earlier, CombSUM performs slightly better
on TREC 4 than CombMNZ. This difference, however, is
not further influenced by the number of weak systems. The
copula-based fusion methods are more resistant to the influ-
ence of weak systems. We note the divide between copula-
methods and baseline approaches growing as the number of
weak systems increases. Each baseline system score is well-
separated from the respective copula-based variant. Error
bars in Figure 3 were omitted to prevent clutter.

6. DISCUSSION
In Section 4, we investigated three different domains in

which we apply copulas to model the joint distribution of
multivariate relevance scores. For each of these settings,
we could observe varying degrees of usefulness of the pro-
posed copula scheme. While for child-friendly web search,
the linear baseline performed best, we achieved significant
improvements in the opinionated blog retrieval setting. At
this point, we investigate the reason for this seeming imbal-
ance in performance gains in order to find a way of deciding
for which problem domains the application of copulas is most
promising.

One of the key properties of copulas is their ability to
account for tail dependencies. Formally, tail dependence de-
scribes the likelihood that component urel,i within the obser-

vation vector U
(k)
rel will take on extremely high or low values,
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Table 5: Score fusion performance based on historic TREC submissions. Evaluated in percentages of MAP
improvements over the best, median, and worst original systems that were fused.

TREC 4 2 runs 4 runs 6 runs 8 runs 10 runs
Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

CombSUM -9.8 - 118 -4.2 20 1128 0.0 33.5 1709 3.0 39.6 2344 3.9 48.5 3116
CopSUM -9.6* - 116 -4.2 20.5* 1136 0.0 33.8* 1721 3.2* 40.0* 2350 4.0 49.2* 3125*
CombMNZ -9.5 - 116 -5.4 18.3 1071 -1.1 31.6 1675 2.1 38.3 2310 3.6 48.0 3106
CopMNZ -9.5 - 115 -5.5 18.2 1080 -1.0 31.9* 1689* 1.8 38.6* 2318* 3.8* 48.0 3117*

TREC 5 2 runs 4 runs 6 runs 8 runs 10 runs
Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

CombSUM -5.6 - 268 -10.6 12.5 614 -6.9 26.5 955 -5.3 34.3 1031 -5.6 40.1 1479
CopSUM -5.2* - 274* -9.9* 13.0* 613 -6.7* 28.0* 972* -4.9* 35.0* 1050* -5.2* 43.3* 1503*
CombMNZ -4.6 - 269 -6.7 17.4 652 -3.5 30.9 986 -2.5 38.2 1074 -3.3 43.5 1526
CopMNZ -4.5 - 274* -6.5 17.8* 667* -3.1* 32.2* 991 -2.4 38.7* 1092 -3.0* 46.0* 1554*

TREC 6 2 runs 4 runs 6 runs 8 runs 10 runs
Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

CombSUM -18.5 - 486 -24.6 7.8 2235 -24.0 29.6 3950 -22.8 44.9 5585 -22.1 56.9 7685
CopSUM -17.7* - 471 -23.1* 9.1* 2279* -22.9* 32.1* 4075* -21.2* 48.3* 5699* -20.8* 58.2* 7702
CombMNZ -17.0 - 491 -18.6 15.5 2537 -18.1 38.8 4386 -16.7 55.0 6111 -17.3 65.0 8117
CopMNZ -16.3* - 490 -17.2* 17.4* 2601* -17.9 40.5* 4458* -16.7 59.6* 6202* -16.4* 66.8* 8170

TREC 7 2 runs 4 runs 6 runs 8 runs 10 runs
Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

CombSUM -9.3 - 132 -16.2 6.2 303 -11.7 25.9 504 -12.8 30.0 708 -14.5 36.3 863
CopSUM -9.4 - 145* -15.8* 6.5* 321* -11.1* 27.2* 538* -12.3* 34.1* 734* -13.8* 39.1* 877
CombMNZ -8.8 - 130 -13.7 9.4 347 -10.1 28.1 538 -10.9 32.8 745 -13.1 38.5 891
CopMNZ -8.8 - 139* -13.3* 10.1* 363* -10.2 30.5* 565* -10.7 34.7* 786* -12.4* 40.4* 922

TREC 8 2 runs 4 runs 6 runs 8 runs 10 runs
Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

CombSUM -15.9 - 475 -11.6 8.1 1188 -11.5 16.9 3194 -7.7 21.8 2739 -5.4 21.8 3372
CopSUM -16.1 - 488 -10.1* 8.3 1201 -10.9* 16.7 3195 -7.3* 22.3* 2755 -4.3* 22.4 3397
CombMNZ -17.2 - 421 -11.8 7.6 1273 -12.9 15.1 3209 -9.8 18.6 2660 -7.2 19.2 3266
CopMNZ -17.3 - 447* -11.2 7.9* 1292 -12.8 14.9 3216 -9.2* 19.7* 2685 -6.7* 20.5* 3301*

TREC 9 2 runs 4 runs 6 runs 8 runs 10 runs
Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

CombSUM -9.0 - 173 -14.9 20.4 473 -15.6 17.4 178 -21.3 18.9 202 -27.9 12.6 204
CopSUM -8.5* - 188* -13.7* 21.2* 499* -15.3 17.9 182 -20.9 19.2* 207 -26.6* 13.1* 206
CombMNZ -11.0 - 155 -19.0 14.5 435 -17.4 14.4 172 -25.3 12.6 186 -32.7 4.7 184
CopMNZ -10.7 - 167 -17.9* 16.0* 432 -17.1 14.7 176 -24.8* 13.0* 190 -30.4* 5.1* 187

as another component urel,j with i 6= j also takes an extreme
value. The strength of this correlation in extreme regions is
expressed by the tail dependency indices IU and IL for upper
and lower tail dependency, respectively. Higher values of I
signal stronger dependencies in the respective tail regions of
the distribution.

IU = P{X1 > F−1
i (ui)|X2 > F−1

j (uj)}

IL = P{X1 ≤ F−1
i (ui)|X2 ≤ F−1

j (uj)}

The literature has brought forward a number of estimators
of the tail indices. We use the R implementation of Frees et
al.’s method [20].

Tail index estimates serve as good tools for separating do-
mains where we are likely to observe performance gains (blog
and bookmark retrieval) and those that do not match linear
combination performance (child-friendly search). Based on
the respective copula models that we fit to our observations,
the blog retrieval (IL = 0.07) and personalized bookmark-
ing (IU = 0.49) show moderate tail dependencies while the

child-friendly web search task has no recognizable depen-
dency among extrema (IL = IU = 0). Since the compari-
son of absolute tail index scores across observations is not
meaningful, we are interested in a method to further nar-
row down the expected performance. To this end, we took a
closer look at the actual data distribution, and investigated
goodness-of-fit tests that are used to determine how well an
assumed theoretical distribution fits the empirical observa-
tions. The higher the likelihood of our observations to have
been generated by the copula models that we estimated, the
higher resulting performance we can expect. We apply a
standard Anderson-Darling test [3] to determine how well
the observations are represented by the copula models. In
the personalized bookmarking setting, we obtain p = 0.47
and for the blog data p = 0.67 for the null hypothesis of
the observations originating from the present copula model.
As we suspected based on the tail dependency strength, the
child-friendly web search data only achieved a probability of
fit of p = 0.046.
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Figure 3: Performance in terms of MAP when 0 . . . 9
out of 10 fused original systems are weak.

To summarize, in this section, we have shown how a com-
bination of tail dependence indices and goodness-of-fit tests
can be used to help differentiate between domains that may
benefit from copula-based retrieval models and those that
may not.

7. CONCLUSION
In this work we introduced the use of copulas, a power-

ful statistical framework for modeling complex dependen-
cies, for information retrieval tasks. We demonstrated the
effectiveness of copula-based approaches in improving per-
formance on several standard IR challenges. First, we ap-
plied copulas to the task of multivariate document relevance
estimation, where each document is described by several po-
tentially correlated relevance criteria. We learned and eval-
uated copula models for three different IR tasks, using large-
scale standard corpora: (1) opinionated blog retrieval; (2)
personalized social bookmarking; and (3) child-friendly web
search, obtaining significant improvements on the first two of
these tasks. Second, we introduced copula-based versions of
two existing score fusion methods, COMB-Sum and COMB-
MNZ, and showed that these improve the performance of
score fusion on historic TREC submissions, in terms of both
effectiveness and robustness, compared to their non-copula
counterparts. Finally, we investigated the performance dif-
ferences of copula models between different domains, and
proposed the use of tail dependency indices and goodness-
of-fit tests to understand the likely effect of using copulas
for a given scenario.

In future work, there are a number of interesting chal-
lenges remaining in applying copula-based models to in-
formation retrieval. (1) The independence assumption be-
tween individual terms in queries and documents is a long-
standing simplification in document and language modelling.

Most attempts at incorporating more powerful dependency
models into the retrieval process resulted in limited perfor-
mance improvements at best. We would like to investigate
the use of copulas in order to more realistically approximate
the complex underlying term dependency structure. (2)
During our investigation of the blog retrieval scenario, we en-
countered examples of non-linear multivariate distributions
of relevance and briefly pointed out the different correlation
regimes that exist within the joint distribution. While the
current single-copula models have been shown to outperform
linear combination models at capturing such structures, we
would like to proceed to inspecting mixture models in which
individual copulas account for certain data ranges to rep-
resent the underlying regimes better than a single holistic
model could. (3) This work represents an exploratory study
that aims to introduce the copula framework to the infor-
mation retrieval community. For reasons of simplicity and
brevity, it is based on data-driven estimation of copula pa-
rameters θ. It would, however, be interesting to build on
the large body of previous work on formal modelling of the
probability of relevance, to derive custom information re-
trieval copulas from the assumed distribution of relevance
among documents.
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leurs marges. Publ. Inst. Statist. Univ. Paris, 8(1):11,
1959.

[49] T. Tsikrika and M. Lalmas. Combining evidence for
relevance criteria: a framework and experiments in
web retrieval. ECIR 2007.

[50] D. Vallet and P. Castells. Personalized diversification
of search results. In SIGIR 2012. ACM.

[51] C.C. Vogt and G.W. Cottrell. Fusion via a linear
combination of scores. Information Retrieval,
1(3):151–173, 1999.

[52] S. Wu and F. Crestani. Data fusion with estimated
weights. In CIKM 2002. ACM.

672


	Introduction
	Related Work
	Copulas
	Extreme conditions
	Copula families
	Fitting copulas to observations

	Relevance Estimation
	Opinionated blogs
	Personalized bookmarks
	Child-friendly websites

	Score Fusion
	Discussion
	Conclusion
	References



