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Anesthesiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany,
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Abstract

Patients in an Intensive Care Unit (ICU) are closely and continuously monitored, and many

machine learning (ML) solutions have been proposed to predict specific outcomes like

death, bleeding, or organ failure. Forecasting of vital parameters is a more general approach

to ML-based patient monitoring, but the literature on its feasibility and robust benchmarks of

achievable accuracy are scarce. We implemented five univariate statistical models (the

naïve model, the Theta method, exponential smoothing, the autoregressive integrated mov-

ing average model, and an autoregressive single-layer neural network), two univariate neu-

ral networks (N-BEATS and N-HiTS), and two multivariate neural networks designed for

sequential data (a recurrent neural network with gated recurrent unit, GRU, and a Trans-

former network) to produce forecasts for six vital parameters recorded at five-minute inter-

vals during intensive care monitoring. Vital parameters were the diastolic, systolic, and

mean arterial blood pressure, central venous pressure, peripheral oxygen saturation (mea-

sured by non-invasive pulse oximetry) and heart rate, and forecasts were made for 5

through 120 minutes into the future. Patients used in this study recovered from cardiotho-

racic surgery in an ICU. The patient cohort used for model development (n = 22,348) and

internal testing (n = 2,483) originated from a heart center in Germany, while a patient sub-

set from the eICU collaborative research database, an American multicenter ICU cohort,

was used for external testing (n = 7,477). The GRU was the predominant method in this

study. Uni- and multivariate neural network models proved to be superior to univariate statis-

tical models across vital parameters and forecast horizons, and their advantage steadily

became more pronounced for increasing forecast horizons. With this study, we established
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an extensive set of benchmarks for forecast performance in the ICU. Our findings suggest

that supplying physicians with short-term forecasts of vital parameters in the ICU is feasible,

and that multivariate neural networks are most suited for the task due to their ability to learn

patterns across thousands of patients.

Author summary

The current health status of patients in an Intensive Care Unit (ICU) is continuously

tracked through multiple vital parameters, and physicians use these markers to immedi-

ately detect life-threatening derangements and for treatment decision-making. Knowledge

about future vital parameter values could lead to the anticipation and timely initiation of

potentially life-saving interventions. We therefore sought to test how reliably vital param-

eters of patients in an ICU could be forecast. Vital parameters of interest were blood pres-

sure (diastolic, systolic, and mean), central venous pressure, peripheral oxygen saturation,

and heart rate. Our study cohort consisted of patients recovering from cardiothoracic sur-

gery in one German and multiple American ICUs. Using patient data from roughly

22,000 ICU admissions, we developed nine forecast models, ranging in complexity from

very simple to highly sophisticated and tested their performance on roughly 10,000 addi-

tional ICU admissions by making them forecast values for all six vital parameters over the

next two hours. We thus generated an extensive collection of benchmarks for forecast

accuracy in the ICU for future researchers to compare against. We found that, compared

to simple statistical methods, sophisticated techniques capable of learning patterns from

thousands of ICU stays are slightly better at forecasting the immediate next value, and

much better when it comes to forecasting further ahead into the future.

Introduction

Postoperative care in an intensive care unit (ICU) is essential for patients undergoing cardio-

thoracic surgery [1]. Due to the strain on patients’ cardiovascular system caused by the proce-

dure and the underlying health condition, complications can arise which require extensive

pharmacological support [2], re-admission to surgery, or organ replacement therapy [3].

Therefore, continuous monitoring of patients’ vital parameters is crucial to allow timely and

well-targeted interventions.

The high density of structured patient data makes the ICU a prime use case for the imple-

mentation of machine learning (ML) solutions, and the feasibility of predicting events like

intra-hospital mortality [3–5], length of ICU stay [4], post-operative bleeding [3], renal failure

[3], delirium [6] or threshold alarms [7] is well-documented (see [8–10] for reviews). However,

due to the multitude of potential complications, a limited number of prediction models for

specific adverse events might not be able to capture all threats to the patient’s recovery, while

further adding to the number of parameters in need of evaluation by the medical staff.

Forecasting vital parameter progression curves instead of specific events offers a more gen-

eralizable approach to ML-assisted monitoring in the ICU. Displaying forecasts for upcoming

vital parameter values could benefit physicians and patients through early indication of

improvements or deteriorations, and could aid with risk-stratification, adjustment of medica-

tion, or discharge decisions based solely on parameters which are already constantly and rou-

tinely monitored.
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Despite its potential to enhance patient monitoring, there is currently a lack of research on

forecasting vital parameters in the ICU. Available studies are limited in terms of sample size,

or external validation, and report only on a limited set of vital parameters and forecast hori-

zons [11,12]. Moreover, to the best of our knowledge, no studies comparing multiple forecast-

ing methodologies of differing complexity to identify the most suitable approaches in the ICU

have been published to date.

While the dominance of modern ML techniques over conventional statistical models has

been well established for applications such as image recognition or natural language process-

ing, ML has only in recent years made it into the methodological mainstream of time series

forecasting [13]. While recent results, e.g. in forecasting competitions, show that well-designed

ML models can be employed highly effectively for forecasting, far simpler and computationally

cheaper methods like exponential smoothing remain competitive [13,14]. For the task of vital

parameter forecasting in the ICU, it therefore remains to be established whether an increase in

model complexity yields better forecasting performance.

With this work, we intend to establish robust benchmarks of forecast accuracy in postoper-

ative cardiothoracic intensive care. For six essential and routinely captured vital parameters

recorded at five-minute intervals, we report and compare forecast performance 5 to 120 min-

utes into the future, using forecasting models differing in complexity from univariate statistical

methods to multivariate neural networks designed for sequential data. We hypothesize that

high-quality forecasting of vital parameters in the intensive care unit is feasible, and that the

forecast quality of modern neural network techniques is superior to that of univariate statisti-

cal methods due to their ability to perform cross-patient learning and pattern detection using

data from thousands of ICU stays at once.

Materials and methods

Study populations

We used two data sources in this study: an internal dataset used for model development,

hyperparameter optimization and internal testing, and an external dataset exclusively used for

model testing.

Model development, hyperparameter optimization and internal testing were performed on

an anonymized single-center dataset from a German quaternary cardiovascular center. It

includes vital parameters recorded at one-minute intervals during ICU stays of patients follow-

ing cardiothoracic surgery between October 2012 and August 2022.

For external testing of our proposed methods, we used a sub-set of patients from the eICU

Collaborative Research Database, a multi-center database containing intensive care data at

five-minute intervals from the United States collected in 2014 and 2015 [15].

Vital parameters of interest were systolic, diastolic, and mean blood pressure, central

venous pressure, heart rate and peripheral oxygen saturation (measured via non-invasive pulse

oximetry). Other data sources like laboratory values or medication were not part of this study.

For compatibility of the two data sources, we down-sampled vital parameters in the internal

single-center cohort to five-minute intervals using the median. To avoid data leakage during

down-sampling, we kept the first timepoint (t0) and value untouched, and defined values at

later timepoints (t0 + 5 minutes, t0 + 10 minutes . . .) as the median of the current and four pre-

ceding observations.

Inclusion criteria were identical for both data sources. We included only adult postopera-

tive patients aged 18 or older, admitted to a cardiothoracic surgery ICU. We required at least

one hour of recorded ICU data per patient, and included only the first 24 hours of their first
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ever recorded ICU admission. Re-admissions were excluded from the analysis. Thus, each

ICU admission corresponds to one unique patient and vice versa.

On the internal single-center cohort, we performed a random 8:1:1 split across patients into

a training set, a hyperparameter validation set, and an internal test set.

We obtained permission from the Charité–Universitätsmedizin Berlin ethics committee to

retrospectively analyze the single-center data (approval number EA1/202/23) and obtained

access to the eICU database.

Data cleaning

Using pre-defined bounds of plausibility for each vital parameter (Table 1), we removed values

exceeding these limits and considered them missing. In the internal dataset, this was done

prior to down-sampling. The start of each patient’s multivariate vital parameter time-series

was defined as the first timepoint with at least one valid non-missing vital parameter. Per vital

parameter, we imputed missing values as follows: we used forward-filling for at most three

consecutive timepoints where a previous value of the same patient was known. If more than

three consecutive timepoints were missing or no previous value was known, we imputed using

non-missing values of the other vital parameters through scikit-learn’s iterative imputing strat-

egy with linear regression models to predict missing from available vital parameters at a given

timepoint. [16]

Forecast methodology

We implemented nine different forecasting models from three model classes (Table 2): five

univariate statistical models, two univariate neural networks (N-BEATS [17] and N-HiTS

[18]), and two multivariate neural networks, specifically a recurrent neural network with gated

recurrent unit (GRU) [19] and a Transformer architecture specifically designed for time-series

tasks [20].

Fig 1 schematically depicts a synthetic example of our forecasting setup for three successive

forecasts produced by one method for a single vital parameter. Every five minutes, models pro-

duced forecasts for 5, 10, 15, . . ., 120 minutes into the future. Forecasts were always based on

the entire observed past up to the current time point. Thus, the length of the forecast window

remained fixed at 120 minutes, but the amount of past values on which predictions were based

depended on the time point of prediction.

Univariate statistical models were newly trained from scratch at every time point per vital

parameter and patient, which allowed models to change with each new observation. In con-

trast, for uni- and multivariate neural networks, we trained single, immutable models on all

patients observed in the training set. For test set predictions, at each time point per patient,

these immutable models were presented with the vital parameters up to the point in question,

from which forecasts were computed.

Table 1. Upper/lower thresholds used for data cleaning. Values exceeding these limits were treated as missing.

Lower limit Upper limit

Systolic blood pressure (mmHg) 8 350

Diastolic blood pressure (mmHg) 8 150

Mean blood pressure (mmHg) 8 170

Central venous pressure (mmHg) -15 50

Heart rate (1/min) 10 330

Oxygen saturation (%) 40 100

https://doi.org/10.1371/journal.pdig.0000598.t001
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Per patient and vital parameter, we produced forecasts every five minutes starting with the

sixth, and ending with the penultimate timepoint. Thus, univariate statistical models were

given at least five past observations to train on, and all forecasts could be evaluated on at least

one true value.

As the only manual adjustment of forecasts produced by our models, forecasts exceeding

the pre-defined bounds of plausibility (Table 1) were capped at the corresponding limit.

Univariate statistical models

Due to the non-seasonal and non-cyclic nature of the studied vital parameters at five-minute

intervals, we restricted the choice of univariate statistical models to models without explicit

components for these types of patterns. We implemented five univariate statistical forecasting

models: the naïve method (constant forecast using the most recent observed value, hereafter

referred to as Naive), the Theta method [21], exponential smoothing (ETS) [22], the autore-

gressive integrated moving average (ARIMA) model [23], and an autoregressive single-layer

neural network (AR NNet) [23]. All five methods were implemented using R’s forecast pack-

age [24]. Model specifications were iteratively tested on the validation set to optimize perfor-

mance in terms of the root mean squared error, but also to avoid any numerical errors during

model fitting or at prediction time.

If at least 24 past observations were available for a given vital parameter, we used Box-Cox-

transformation [25] on the time series with a transformation parameter between zero and two,

using the implementation in the forecast package [24]. Predictions were inverse-transformed

to retain the original scale.

For the ETS model, we defined the following potential model specifications and let the fore-

cast package chose the optimal specification based on the corrected Akaike Information Crite-

rion (AICc). We used only non-seasonal ETS models with either additive or multiplicative

error type, and either additive, multiplicative or no trend. Further, we allowed the trend to be

either damped or non-damped. [22–24]

The potential ARIMA model specifications were as follows: We allowed no seasonal model

components or seasonal differencing. Non-seasonal first-order differencing was an option. We

restricted the autoregressive order and the moving average order to 1, 2 or 3, each, with their

sum not exceeding 4. The optimal model was chosen based on the AICc. [23,24]

The AR NNet was of non-seasonal autoregressive order 6, included no seasonal autoregres-

sive term, a hidden size of 18 and a weight decay of 2. We emphasized recent observations

through exponentially rising observation weights. The final forecasts were the result of fitting

five models with different initial model weights and averaging their individual results. [23,24]

Table 2. Overview of forecasting models.

Model Class Training Implementation Reference

Naive Univariate statistical Trained from scratch for every forecast forecast[24], R [23]

Theta Univariate statistical Trained from scratch for every forecast forecast, R [21,26]

ETS Univariate statistical Trained from scratch for every forecast forecast, R [22,23]

ARIMA Univariate statistical Trained from scratch for every forecast forecast, R [23]

AR NNet Univariate statistical Trained from scratch for every forecast forecast, R [23]

N-BEATS Univariate neural network One model per vital parameter, trained on the training set NeuralForecast[27], Python [17]

N-HiTS Univariate neural network One model per vital parameter, trained on the training set NeuralForecast, Python [18]

GRU Multivariate neural network One model for all vital parameters, trained on the training set PyTorch[29], Python [19]

Transformer Multivariate neural network One model for all vital parameters, trained on the training set PyTorch, Python [20]

https://doi.org/10.1371/journal.pdig.0000598.t002
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We implemented the Theta model, a combination of simple exponential smoothing with a

linear trend obtained through simple regression [26], using the forecast package, but manually

overrode checks for seasonality to force unseasonal models [24].

Univariate neural network models

N-BEATS (short for Neural Basis Expansion Analysis for interpretable Time Series forecast-

ing) [17] and N-HiTS (Neural Hierarchical Interpolation for Time Series forecasting) [18],

two state-of-the-art univariate forecasting models based on multiple stacks of multi-layer per-

ceptrons, were implemented using the Neural Forecast [27] python package. Given a set of

potential hyperparameters per model, the package provides automatic selection and fitting of

Fig 1. Schematic illustration of the forecasting setup. Synthetic example of three successive forecasts produced by the same method for

one simulated vital parameter. Layout of the figure inspired by [11].

https://doi.org/10.1371/journal.pdig.0000598.g001
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the best-performing model using a rolling window approach which continually validates

model performances.

Per vital parameter, both models were fitted on the training set. Using the mean and stan-

dard deviation estimated from the training set, vital parameters were standardized to exhibit

mean zero and standard deviation one prior to model fitting, and de-standardized post predic-

tion. Model training lasted 100 epochs in batches of size 128. Per vital parameter and model,

25 hyperparameter configurations were tested using the HyperOpt [28] search algorithm.

For both models, hyperparameter choices were identical for the following three parameters:

the learning rate (between 5�10−5 and 5�10−3 in steps of 10−5), the number of hidden multi-

layer perceptron units (32, 64 or 128) and the number of past timepoints used as model input

size (12, 24, 48 or 72). Additional hyperparameters were the polynomial degree for trend

modeling in the N-BEATS model (choices 2, 3 or 4), and dropout (between 0.0 and 0.4 in steps

of 0.01) in the N-HiTS model.

Multivariate neural network models

We implemented both the GRU and the Transformer using PyTorch [29]. Models with differ-

ent hyperparameter choices were fitted on the training set, and their performance was evalu-

ated on the validation set. Vital parameter standardization was performed as described above

for univariate neural network models. The models were designed to output forecasts for all 24

forecast horizons (5 through 120 minutes) simultaneously.

Hyperparameter choices for the GRU were the number of layers (between 1 and 4), the hid-

den size per layer (128, 256 or 512), dropout (between 0.0 and 0.4 in steps of 0.01), L2 regulari-

zation (between 10−6 and 5�10−5 in steps of 10−6), and the learning rate (between 5�10−5 and

5�10−3 in steps of 10−5).

For the Transformer, we used the time-series architecture proposed by Zerveas et al (2021)

[20]. In addition to the hyperparameters used for training the GRU, it required hyperpara-

meter choices for the activation function (rectified linear unit or Gaussian error linear unit),

positional encoding (fixed or learnable), model dimension (64, 128, 256 or 512), and the num-

ber of transformer heads (8 or 16).

Hyperparameter optimization was implemented using the Ray package [30]. We used the

HyperOpt search algorithm [28] with trials set up and ended prematurely in case of poor per-

formance after at least 10 epochs using the Hyperband algorithm [31]. Models were trained for

up to 100 epochs with training data presented in batches of 128 patients. 50 different hyper-

parameter combinations were tried to find the most suitable model.

Statistical analysis

Forecasts were compared to the known ground truth as displayed in Fig 1 for all forecast hori-

zons from 5 to 120 minutes into the future. For all six vital parameters and all forecast hori-

zons, we computed the root mean squared error (RMSE) to evaluate the model accuracy. If the

ground truth was unknown (and the vital parameter subsequently imputed to allow model fit-

ting), the observation was not counted towards the RMSE. We used repeated bootstrapping on

the patient level with 250 iterations to compute 95% confidence intervals. As additional error

metrics reported in the appendix, we computed the mean absolute error (MAE) and the mean

absolute percentage error (MAPE).

To summarize model performances in a single metric, we further computed the MAPE, a

scale-less error metric, across all vital parameters and forecast horizons. 95% confidence inter-

vals for MAPE were again computed via bootstrapping.
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A code repository containing the relevant software behind this project can be found at

https://github.com/nhinrichsberlin/icu-vital-parameter-forecasting.

Results

Study populations

We identified 24 831 patients in the internal dataset, out of which 19 865 were randomly allo-

cated to the training set, 2 483 into the validation set, and 2 483 to the internal test set. The rel-

evant cohort from the eICU database used for external testing consisted of 7 477 patients

(Table 3).

Patients’ ages were similar across datasets, with a median of 68 years. However, the preva-

lence of male sex was higher in the internal sets (69.1, 68.4, 70.1% in training, validation, test

set, respectively) compared with the eICU dataset (63.9%). For systolic, diastolic, and mean

blood pressure, as well as peripheral oxygen saturation, there were no major discrepancies in

the respective distribution between the populations. The external test set exhibited fewer

patients with low central venous pressure (lower quartile 6.0 in the internal cohorts vs. 8.0 in

the external test set), and, on average, lower heart rates (median 89.0 in the internal cohorts vs.

80.0 in the external test set). A detailed comparison of vital parameter distributions across

cohorts is depicted in S1 Fig.

In the internal dataset, missing vital parameters were scarce, ranging from 1.8% for oxygen

saturation to 3.1% for the heart rate. In the eICU cohort, the rate of missing values was consid-

erably higher for systolic, diastolic, and mean blood pressure (~21% each) as well as central

venous pressure (52.2%). Details are given in S1 Table.

Comparison of forecast quality

An example of a single forecast run of four models at a single timepoint is illustrated in Fig 2.

The mean absolute percentage error across all vital parameters and forecast horizons is dis-

played in Figs 3 (internal test set) and 4 (external test set). Root mean squared errors per vital

parameter, forecast model and selected forecast horizons are displayed in Figs 5 (internal test

set) and 6 (external test set). A complete summary of performances for all vital parameters and

forecast horizons using three accuracy metrics (RMSE, MAE and MAPE) can be found in S2

Table. Optimal hyperparameters of the uni- and multivariate neural network models are listed

in S3 (Transformer), S4 (GRU), S5 (N-BEATS) and S6 (N-HiTS) Tables.

Table 3. Description of the study populations. Continuous variables are reported as Median [Q1, Q3]. Binary variables are reported as n (%). BP = Blood pressure.

SpO2 = Peripheral oxygen saturation (measured via non-invasive pulse oximetry).

Training data Validation data Internal test data External test data (eICU)

No of observations 3 980 262 501 843 493 548 1 997 745

No of patients 19 865 2 483 2 483 7 477

Age (years) 68.00 [58.00, 76.00] 68.00 [58.00, 75.00] 68.00 [59.00, 76.00] 68.00 [59.00, 76.00]

Sex (male) 2 749 272 (69.1) 343 267 (68.4) 346 117 (70.1) 127 5870 (63.9)

BP Systolic (mmHg) 116.00 [101.00, 132.00] 116.00 [101.00, 131.00] 116.00 [101.00, 131.00] 117.93 [106.00, 130.00]

BP Diastolic (mmHg) 56.37 [50.00, 63.00] 56.63 [50.00, 63.00] 56.00 [50.00, 63.00] 56.41 [50.00, 63.00]

BP Mean (mmHg) 75.00 [68.00, 83.00] 75.00 [68.00, 83.00] 75.00 [68.00, 83.00] 75.79 [69.00, 82.00]

Central venous pressure (mmHg) 9.00 [6.00, 12.00] 9.00 [6.00, 12.00] 9.00 [6.00, 12.00] 9.12 [8.00, 10.94]

Oxygen saturation (%) 98.00 [96.00, 100.00] 98.00 [96.00, 100.00] 98.00 [96.00, 100.00] 97.41 [96.00, 99.00]

Heart rate (1/min) 89.00 [78.00, 96.00] 89.00 [79.00, 96.00] 89.00 [78.00, 96.00] 80.00 [71.00, 90.00]

https://doi.org/10.1371/journal.pdig.0000598.t003
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Fig 2. An example of forecasts produced by four different models at a single timepoint for a single patient for all six

vital parameters. Times are shifted for additional de-identification of the patient. The ground truth is displayed in black.

https://doi.org/10.1371/journal.pdig.0000598.g002
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For all methods and vital parameters, forecast errors increase with increasing forecasting

horizon (Figs 5 and 6). All four implemented neural network models display major improve-

ments over conventional, univariate statistical models. The GRU, however, stands out as the

best performing methodology implemented in this study. Its mean absolute percentage error

across all vital parameters and forecast horizons is the lowest among all models, both in the

internal (Fig 3) and the external test set (Fig 4). The Transformer exhibits the second-best per-

formance both in the internal and external test sets. Thereby, multivariate neural network

models claim the top spot among the model classes implemented in this study, followed by

univariate neural networks, and lastly univariate statistical models. However, the gap between

uni- and multivariate neural network models is not as pronounced as the gap between univari-

ate neural networks and univariate statistical models.

The advantages of the neural network models become more pronounced with increased

forecasting horizon (Figs 5 and 6). When forecasting only five minutes into the future, the rela-

tive improvement compared to simpler forecasting methods is slight. However, when forecast-

ing 60 or 120 minutes into the future, these methods prove especially beneficial. Further,

unlike other methods from the class of univariate statistical models, the four implemented

neural network models consistently out-perform the naïve method.

Within the class of univariate neural networks, the difference between N-HiTS and

N-BEATS is slight, although N-HiTS exhibits a fractionally smaller MAPE across all vital

parameters and forecast horizons both for the internal and the external test sets. Among the

univariate statistical models, the AR NNet displays the best forecast accuracy for forecasting

horizons larger than 5. However, for forecasts 5 minutes ahead, its performance is sub-par.

Fig 3. Mean absolute percentage error (MAPE) across all vital parameters and forecast horizons in the internal

test set. The best performing model (in terms of MAPE) is indicated by *. Error bars indicate the 95% confidence

interval and were calculated from 250 bootstrap samples.

https://doi.org/10.1371/journal.pdig.0000598.g003
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Like GRU, Transformer, N-HiTS and N-BEATS, AR NNet’s performance relative to the naïve

model consistently improves with increasing forecast horizon.

ARIMA performs second best among univariate statistical models, but the improvement

upon the naïve model is mostly negligible.

ETS and Theta perform poorly. For large forecast horizons of 60 or 120 minutes, they are

consistently the worst performing models, and drastically underperform even when compared

to the naïve model (Figs 5 and 6).

Discussion

In this study, we applied forecasting methodologies of varying complexity to vital parameters

tracked in the ICU following cardiothoracic surgery and compared the achieved forecast accu-

racies. Data originated from roughly 32,000 episodes of ICU care from a German heart center

and the American multicenter eICU collaborative research database. With six vital parameters

per patient, nine forecasting models, and forecast horizons ranging from 5 to 120 minutes, we

established the most extensive set of benchmarks of forecast performance in the ICU to date.

We found modern neural network techniques to be far superior to conventional statistical

models, with a widening performance gap for higher forecast horizons. While forecasting is a

statistical learning problem where additional model complexity is oftentimes not rewarded

with improved forecast accuracy [13,14], our findings support the initial hypothesis that the

ICU is a setting primed for successful application of neural networks for forecasting: Despite

high volatility and unpredictability on an individual patient level, there are common elements

between patients and their vital parameter curves that can be learned and exploited. Firstly,

Fig 4. Mean absolute percentage error (MAPE) across all vital parameters and forecast horizons in the external

test set (eICU). The best performing model (in terms of MAPE) is indicated by *. Error bars indicate the 95%

confidence interval and were calculated from 250 bootstrap samples.

https://doi.org/10.1371/journal.pdig.0000598.g004
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Fig 5. Root mean squared error (RMSE) per vital parameter for selected forecast horizons in the internal test set. Different

forecasting models are indicated by color. The best performing model (in terms of RMSE) is indicated by *. Error bars indicate the 95%

confidence interval and were calculated from 250 bootstrap samples.

https://doi.org/10.1371/journal.pdig.0000598.g005
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Fig 6. Root mean squared error (RMSE) per vital parameter for selected forecast horizons in the external test set (eICU). Different

forecasting models are indicated by color. The best performing model (in terms of RMSE) is indicated by *. Error bars indicate the 95%

confidence interval and were calculated from 250 bootstrap samples.

https://doi.org/10.1371/journal.pdig.0000598.g006
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certain dynamics, correlations, and limits of human physiology apply to all patients and can be

approximated by a model. Secondly, treatment decisions by the medical staff adhere to rigor-

ous guidelines, with the goal of achieving or maintaining vital parameter targets conductive to

patient recovery. For example, for most patients lower end target values for mean blood pres-

sure and oxygen saturation are 65 mmHg [32] and 92% [33], respectively. By training multi-

variate neural networks on close to 20,000 ICU admissions, our neural network models were

given ample chance to detect, and at prediction time reflect these patterns. Our findings could

therefore be seen as further evidence for the advantages of simultaneously learning from many

independent, yet related examples (cross-learning) in time-series forecasting [34].

Their inability to perform cross-patient learning might also be at the core of the inability of

some of the implemented univariate statistical models to produce better results than the naïve

method. An over-reliance on recent trends could explain poor forecast performance, especially

for longer forecast horizons, of the Theta method and ETS. Since these models are fitted inde-

pendently for each patient, they have no way of judging whether certain trends and patterns

ever occur in the ICU, where patients are under constant surveillance with the ability to inter-

vene at short notice in case of unwanted developments.

Regarding the superiority of multivariate over univariate neural network models, we argue

that modeling all vital parameters at once diminishes negative effects of missing values or arte-

facts not detected in the initial data cleaning step, so long as they do not apply to all vital

parameters at the same time. Multivariate modeling further adds the potential to draw conclu-

sions on temporal dynamics across vital parameters, e.g. if a worsening condition manifests

itself in some vital parameters faster than in others.

Given the recent success of Transformer architectures in tasks requiring the processing of

sequential data [20,35], our findings regarding the superiority of the GRU to the Transformer

in ICU forecasting is somewhat surprising. While the Transformer is competitive and per-

forms better than univariate models in ICU forecasting, it has not proven to be the state-of-

the-art in this specific application. Whether a different choice of Transformer architecture

could remedy this shortcoming, or whether we have found the sweet spot of model complexity

with the GRU remains speculative.

Regarding the data source used in this study for external validation, we see great potential

for the eICU collaborative research database to become one of the benchmark datasets for

multivariate time-series forecasting. Due to its large number of ICU stays, multi-center struc-

ture, and accessibility for research, evaluation on the eICU database is a formidable test of a

model’s ability to generalize well and robustly.

Limitations

Our work exhibits five key limitations, which should be addressed in future work. First, our

forecasts were based solely on the vital parameters in question. However, for most patients in

intensive care, the health status is captured through additional data sources which we left

untapped in this study. Blood tests, medication, diagnoses, information on the preceding sur-

gery or mechanical circulatory support might contain valuable information which could be

exploited to further improve forecast accuracies. As currently constructed, the neural networks

trained on thousands of ICU stays might have indirectly learned to price in interventions by

the medical staff. Adding medication as external features might decrease the risk of models

falsely predicting trends that are in truth the result of pharmacological intervention. We

refrain from adding external features at this point because a) they are not needed to establish

benchmarks or prove the superiority of modern neural network techniques in ICU forecasting,

which we were able to demonstrate even without external features, b) their addition comes
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with considerable data processing work, especially in multicenter datasets that use non-stan-

dardized terms and units of measurement, and c) the process of distinguishing high-impact

features that improve forecast performance from those that merely add complexity without

additional useable information constitutes a separate research project.

Second, our models produced only point forecasts, whereas in practice prediction intervals

might be required to indicate the uncertainty associated with each forecast. While obtaining

prediction intervals from statistical models like ARIMA and exponential smoothing is straight-

forward under strong assumptions and implemented in frameworks like R’s forecast package

[24], it is a much more complex endeavor for recurrent neural networks or Transformers, and

requires the implementation of Bayesian modeling, quantile regression, repeated sampling

techniques or conformal predictions [36,37]. Given the diverse approaches to this problem

and the difficulty of evaluating intervals due to their inherent tradeoff between width and cov-

erage rate [38], the derivation of prediction intervals is an ongoing research topic that deserves

dedicated exploration.

Third, we developed and validated our models on a highly specific patient cohort, postoper-

ative cardiothoracic surgery patients. Whether our findings translate to other ICU cohorts,

and whether specific cohorts require specific forecast models remains to be tested.

Fourth, we evaluated our models strictly on quantitative performance in terms of deviation

from the ground truth, regardless of medical context or interpretation of predicted changes.

How specific medical scenarios influence forecasting, and in which cases it could be most ben-

eficially employed is beyond the scope of this benchmark study.

Fifth and finally, this study does not address practical questions regarding optimal visualiza-

tion and operationalization in real world ICU settings. On the path towards forecast-guided

decision support in the ICU, details regarding the optimal frequency of forecasts, the most

beneficial forecast horizon and the visual or acoustical highlighting of forecasts exceeding

specified limits need to be customized to different medical domains and ICU workflows.

Conclusions

Generating accurate short-term forecasts of vital parameters for postoperative patients in

intensive care is feasible, and displaying forecasts to the medical staff offers the potential to

improve patient care through foresighted decision-making. Whilst therapeutic interventions

will never be solely based on model-based forecasts, we see the potential for further develop-

ment into a decision support tool for automated early warning to trigger a review by the

patient’s caregiver.

Regarding the choice of forecast models, modern multivariate neural networks achieve

forecast accuracies superior to univariate time series models. Due to their demonstrated

advantage in terms of accuracy, and their potential for further improvements through incorpo-

rating external parameters such as administered medication or laboratory results, they should

be a focus for the further development of forecasting techniques in the ICU.
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