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Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are
no data from living patients to inform whether differential gene expression of pulmonary artery ECs
(PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate
our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and
to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC
balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional
signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples
underwent single cell and population growth characterization and anoikis quantification. Fifty-

four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited
passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly
upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling,
oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in
gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional
assays demonstrated enhanced replication competency and anoikis resistance. Our findings
recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like
phenotype in ECs from the central vasculature of PAH patients. This “cell biopsy” method may provide
insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.

Endothelial dysfunction is a distinctive feature of pulmonary arterial hypertension (PAH)'. Controversy persists
around the contribution of the endothelium in the proximal circulation versus the microvasculature, respective
pulmonary arterial endothelial cell (PAEC) endotypes, and endothelial mechanisms responsible for disease
progression. Inability to access human tissue in vivo has limited the validation of pre-clinical observations in
pulmonary vascular disease. Most translational studies use human PAH endothelial cells (ECs) from lungs
post-mortem or at the time of transplant or differentiated from inducible pluripotent stem cells?. While genomic
studies of PAH cell lines from these sources have uncovered important mechanisms?, these methods are limited
by selection bias (end-stage disease), the processing of cells after death or explant, or are derived from outside
of the diseased organ. There are no data from living patients with PAH to inform whether differential gene
expression of PAECs can discern disease subtypes or progression, identify therapeutic targets, or provide new
insight into pathobiology.
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We and others have previously reported successful isolation of cells with EC phenotype from the balloons
of routine right heart catheters (RHC)**. We identified that patients with more severe PAH were more likely
to have successful propagation of cells and that PAH PAECs may have been resistant to anoikis, dysregulated
programmed cell death when a cell is detached from the extracellular matrix (ECM). Limitations of this work
included the possibility of phenotypic drift with serial passaging and the lack of additional molecular and func-
tional studies.

The aims of this study were to use RNA sequencing to provide further validation of this method and to per-
form additional PAEC phenotyping including over the PAH clinical disease course. First, we evaluated changes in
the transcriptome of serial in vitro passages of PAECs. Second, we compared the PAH gene expression signature
to that of controls, among repeated samples in the same patients over time and compared PAH gene expression
to that of pre-capillary pulmonary hypertension (PH) in non-Group 1 disease. Based on our prior observa-
tions, we explored anoikis resistance as a novel paradigm that may contribute to the propagation of pulmonary
vascular disease.

Results

Cohort characteristics

Forty-nine subjects had a total of 54 RHCs over the course of the study (two subjects had a total of seven RHCs
with samples obtained at each catheterization). To evaluate the effect of serial passaging on the transcriptome, six
passaged specimens (passage 3 and 4 for each sample) from three of the 54 unique catheter tips were sequenced.
Characteristics of subjects are presented in Table 1 and Table S1. The median age was 63 years (range 19-91 years)
and 37 (69%) were female. Twenty (37%) balloon tips were from subjects with PAH, the majority of whom had
idiopathic PAH (IPAH), connective tissue disease-associated PAH (CTD-APAH) and portopulmonary hyperten-
sion (PoPH). Most PAH patients were prevalent and were receiving PAH specific medications at the time of RHC.
Six (30%) were treatment naive. The average pulmonary vascular resistance (PVR) was 4.0 Wood units (range
1.2-19.6 Wood units). Eighteen (33%) were from Group 2 PH patients, of which five (9%) had combined pre-
and post-capillary PH. Eight tips (15%) were from subjects with Group 3 PH, half of whom had obstructive lung
disease. One tip was from a subject with chronic thromboembolic (Group 4) PH, four from subjects with Group
5 PH and three from patients who underwent RHC but did not have evidence of PH, designated as controls.

Balloon tips*, n 54
Subjects, n 49

Female sex 37 (69)
Age, years 63 (19-91)
Body mass index, kg/m? 28 (16-46)
Self-reported race

White 42 (77)
Black 9(17)
Asian 1(2)
Other 5(9)
Self-reported Hispanic ethnicity 7 (13)

Pulmonary hypertension subtypes

Group 1 PAH 20 (37)
Idiopathic PAH 5(9)
Heritable PAH 2(4)
CTD-APAH 5(9)
Congenital heart disease-APAH 2(4)
HIV-APAH 12)
Portopulmonary hypertension 5(9)

Group 2 PH 18 (33)
Combined pre-post capillary PH | 5(9)

Group 3 PH 8 (15)

Group 4 PH 1(2)

Group 5 PH 4(7)

Control® 3(6)

Table 1. Characteristics of subjects, by balloon tips. Data represented as n (%) or median (range). *Two
subjects had a total of seven biological replicates (one subject with two balloon tips, one subject with five
balloon tips). "Control are subjects who underwent right heart catheterization without evidence of PH.
PAH pulmonary arterial hypertension, defined as mean pulmonary artery pressure >20 mmHg, pulmonary
capillary wedge pressure <15 mmHg, and pulmonary vascular resistance >3.0 Woods units, PH pulmonary
hypertension, defined as mPAP >20 mmHg, CTD connective tissue disease, HIV human immunodeficiency
virus, APAH associated pulmonary arterial hypertension.
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The transcriptome remained stable over serial passaging of PAECs

All RNA sequencing was performed on passage three or four for all samples. Unsupervised sequencing data of
passaged specimens were analyzed to investigate whether the transcriptome changes meaningfully with early
passaging. We compared passage 3 with passage 4 in PAECs from three subjects with heritable PAH (HPAH),
PoPH and Group 2 PH. Cosine similarities were computed between a subject’s sequencer output and the cor-
responding passaged sequence. Pairs were highly similar (range 0.95-0.99) and the average similarity to all other
samples (from other PAEC lines) was low (range 0.79-0.86) (Table S2 and Fig. S1). Passage number was fixed
for all comparisons (PAH vs. control, across biological replicates).

PAECs from PAH subjects differentially expressed genes that regulate the oxidative stress
response, alter cellular metabolism and participate in BMP and Wnt signaling pathways

An unsupervised analysis was performed of the full transcriptome of PAECs from subjects with PAH as compared
to controls. Fold-change analysis demonstrated 667 differentially expressed genes in PAH subjects as compared
to controls (Fig. 1A,B). Six genes were significantly upregulated (pgpr <0.05) in PAH subjects: CFAP92, SNORA4,
TVP23A, SPIN3, PNSIR and PAPSSI (Table 2).

Six-hundred and sixty-one RNA transcripts were differentially downregulated in PAH subjects compared
to controls; 234 mapped to known genes. Pathway analysis revealed four pathway clusters: Hop pathway in
cardiac development, ALK in cardiac myocytes, leukocyte transendothelial migration and Fanconi Anemia
pathway (Fig. 1C). Downregulated genes and ontologic themes related to bone morphogenetic protein (BMP)
signaling (GATA4’, NKX2-5%, ACVRI®), canonical Wnt signaling (CTNND1I), production of ROS by NADPH
oxidase (RAC2), regulation of apoptosis (ACTN1) and posttranslational ubiquitination (CENPS') are described
in Table 2.

PAECs from subjects with PAH exhibited resistance to anoikis

In our initial publication?, we were most likely to propagate primary cells from patients with severe PAH. We
noted that PAECs derived from certain PAH patients were capable of rapid expansion and growth with traditional
passaging in culture media and continued to expand outside of a monolayer even when transferred to a plastic
substrate, suggesting ex vivo replication competency. PAECs from two subjects with HPAH with qualitative
evidence of replication competency had RNA sequencing performed. Subject HPAH1 has classical HPAH but
declined genetic testing and subject HPAH?2 is known to have an ALKI mutation and hereditary hemorrhagic
telangiectasia'!. A heatmap of pre-selected genes that govern anoikis (GO: 0043276) of the HPAH specimens
compared to controls is shown in Fig. 2B and demonstrated between-subject heterogeneity of expression in genes
related to anoikis as compared to controls. Most genes related to anoikis were upregulated in HPAH1 whereas
HPAH2 had more equivocal gene expression. Fold-change analysis of differentially expressed genes in HPAH1
vs. controls revealed increased expression of PLACS (Fig. 2A,C)"? whereas despite known AKLI mutation, bulk
gene expression of HPAH2 was similar to controls (Fig. S2). Fold change analysis of differential gene expression
between the two HPAH specimens demonstrated significantly different genomic expression (Fig. S3).

To further explore across-subject heterogeneity in the anoikis resistance paradigm, we selected additional
PAEC samples from PAH patients of varied clinical phenotypes. Serial dilution was performed on the two HPAH
samples above (HPAH1 and HPAH?2), three additional PAH PAEC samples, and three purchased commercial
controls (Lonza; Basel, Switzerland). PAECs from all five subjects exhibited a proliferative capacity in low density
and single-cell assays, to varying degrees; approximately 5% of the cell colonies survived the suspension, charac-
teristic of anoikis-resistance (Fig. 3A,B, left-hand panel). The growth of anoikis-resistant clones varied and was
more robust in certain clinical phenotypes (HPAH1 and IPAH1 vs. pulmonary veno-occlusive disease [PVOD])
and in untreated (incident) disease (IPAH1 vs. IPAH2) but was not necessarily related to hemodynamic burden
at the time of RHC (Fig. 3D, Table S3). PAECs from HPAH1 survived in suspension without ECM attachment
for 7 days, whereas the PAECs from IPAH1, IPAH2, PVOD and HPAH2 demonstrated more limited replication
competency (Fig. 3B, right-hand panel, C). The anoikis-resistant cells from HPAHI formed clusters in the pres-
ence of Griffonia lectin, characteristic of an endothelial microvascular or progenitor-like phenotype (Fig. 3E)".

Transcriptome changes in biological replicates tracked with disease course

Two subjects had biological replicates obtained from serial catheterizations and had major clinical events during
this time. The first subject was a 56-year-old female diagnosed with PoPH due to primary biliary cirrhosis and
started on PAH therapy. PVR improved but she remained in a high cardiac output state. Following liver trans-
plantation, repeat RHC after she had been weaned off all PAH therapy showed that her PH had nearly resolved
(Fig. 4A). A heatmap of pre-selected genes related to the pathogenesis of PoPH'* is shown in Fig. 4B with genes
differentially expressed compared to controls over serial samples. Comparison of the transcriptome before and
after transplant demonstrated a marked reversal of gene expression away from the PAH pattern and closer to
that of control subjects after transplant. Transplant-induced changes in the PAEC transcriptome clustered to
biological pathways related to the immune response (Fig. 4C)".

The second subject, a 44-year-old male with CTD-APAH due to systemic sclerosis, experienced clinical wors-
ening characterized by increasing PVR and profound hypoxemia (Fig. 5A). Nine months after his second RHC
the patient developed hypoxemic respiratory failure requiring lung transplantation. Histopathologic examination
of the explanted lungs revealed significant pulmonary venule involvement (Fig. 5C). A heatmap of pre-selected
genes related to hypoxia (GO: 0071456) and EIF2AK4 showed marked changes between the two catheteriza-
tions and compared to controls (Fig. 5B). Comparison of the transcriptome between these two samples (baseline
and clinical worsening) did not reveal statistically significant differences. However, expression was increased in
HIF-3a, TWISTI, EIF2AK4, and PINK1 and decreased in STOX1 and CD34.
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Top differentially upregulated genes and ontology

Symbol Gene name logFC | Adj. p-value Ontology
Aberrant expression associated with deficiency of Acyl-CoA Dehydrogenase
CFAP92 Cilia and flagella associated protein 92 (putative) 3.84 0.03 (the first enzyme involved in mitochondrial fatty-acid oxidation), associated
with mitochondrial Complex I deficiency
SNORA4 Small nucleolar RNA, H/ACA box 4 236 0.04 Involved in RNA procgssing, 17ﬁ-estradiol r?sults in increased SNORA4 mRNA,
snoRNAs are involved in cancer pathogenesis
Protein secretion, vesicle-mediated transport, vacuole, integral component of
TVP23A Trans-golgi network vesicle protein 23 homolog A | 2.32 0.03 Golgi membrane, plasma membrane, enhanced protein expression in many
types of cancers
SPIN3 Spindlin family member 3 1.53 0.03 Methylated histone binding, regulation of transcription
PNISR PNN interacting serine and arginine rich protein 0.91 0.03 Participates in RNA binding, active in presynaptic active zone
Bifunctional enzyme: transfer of sulfate to ATP and transfer of phosphate
PAPSS1 3’-Phosphoadenosine 5’-phosphosulfate synthase 1 | 0.61 0.04 from ATP to APS, required for biosynthesis of sulfated L-selectin ligands in

endothelial cells

Differentially downregulated genes and biologic pathways

Gene

Ontology

Hop pathway in cardiac development

GATA4 Transcription factor in BMP pathway, transcriptional activator of ANF in cooperation with NKX2-5

NKX2-5 Transcriptional activator of ANF in cooperation with GATA4

ALK in cardiac myocytes

GATA4 Transcription factor in BMP pathway, transcriptional activator of ANF in cooperation with NKX2-5

NKX2-5 Transcriptional activator of ANF in cooperation with GATA4

ACVRI BMPRI, transduces signals of BMPs, forms a complex with BMPs (including BMPR2) and then recruits SMAD, activates canonical SMAD signaling. phosphoryl-

ates SMAD1/5/8, suppresses TGFbeta/activin pathway,

Leukocyte transendothelial migration

ACTNI Actin filament bundle assembly, platelet degranulation, regulation of Bcl-2-apoptotic process

CTNNDI | Delta-catenin, negative regulation of Wnt signaling pathway (differentiation, proliferation, migration), cell-cell adhesion,

RAC2 Augments production of ROS by NOX1 and 2, positive regulation of proliferation

VASP Substrate of BCR-ABL oncoprotein, actin-associated protein, cell migration, platelet activation, cytoskeleton remodeling, actin filament elongation

Fanconi anemia pathway

SLXIA DNA endonuclease
SLXI1B DNA endonuclease
CENPS DNA binding component of the Fanconi Anemia core complex, leads to monoubiquitination of the complex in response to DNA damage, prevents chromosomal

breakage

Table 2. Differentially regulated genes and ontology: Group 1 pulmonary arterial hypertension vs. controls.

Subjects with group 2-5 precapillary PH demonstrated similar transcriptional profiles as
group 1 PAH

The transcriptome of PAECs from Group 1 PAH subjects was compared with PAECs from all Group 2-5 pre-
capillary PH (mPAP >20 mmHg, PCWP < 15 mmHg, and PVR >3 Wood units). A representative heatmap and
principal component analysis (PCA) plot of the top differentially expressed genes is shown in Fig. 6, with similar
patterns noted between the two groups. An unsupervised fold-change analysis of the full transcriptome failed to
find significant differences in expressed genes between Group 1 PAH and all Group 2-5 precapillary PH subjects
(i.e., transcriptional signatures among PAECs from all subjects with pre-capillary PH were similar).

Discussion

We have shown that procurement of PAECs from routine RHC is a valid method that provides a window into
the progression of pulmonary vascular disease from living patients over time. Transcriptomic changes appeared
stable over early passages with a signature from the central pulmonary vasculature that is characteristic of PAH,
but also provides new insights. PAECs from subjects with PAH demonstrated differential expression of genes
involved in BMP and Wnt signaling, cancer pathogenesis, fatty acid oxidation and glycolysis. Select PAECs from
PAH patients were replication competent and resistant to anoikis, a novel pathologic mechanism that warrants
further evaluation.

The genetic signature of PAH PAECs recapitulated several established and fundamental pathways in PAH,
supporting our hypothesis that the proximal circulation is involved in pulmonary vascular disease and requires
dedicated study. We demonstrated alteration in the transcription of genes related to BMP'® and canonical Wnt
signaling'” in PAH subjects. There was downregulation of GATA4 and NKX2-5, which together work as tran-
scriptional activators of atrial natriuretic factor (ANF)'®, implicated in experimental PH'*. GATA4 functions
as a transcription factor in the BMP signaling pathway'® and plays a role in serotonin-induced proliferation in
PAH?. ACVRI (also BMPRI or ALK2) was downregulated in PAH PAECs, which aligns with established dys-
functional BMP/TGF-p signaling in experimental PH*' and is a new therapeutic target in PAH*2. CTNNDI, which
encodes for delta-catenin and is an important negative regulator within the canonical Wnt signaling pathway,
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Figure 2. Differential gene expression in subjects with heritable pulmonary arterial hypertension (HPAH)
versus controls. (A) Volcano-plot of unsupervised fold-change analysis of differentially expressed genes between
HPAHI1 vs controls*. (B) Heatmap of genes related to anoikis (GO: 0043276) demonstrated significant between-
subject heterogeneity with increased expression in HPAH]1, who has classical heritable PAH, and equivocal
expression in HPAH2, who has hereditary hemorrhagic telangiectasia. (C) In an unsupervised analysis, one
gene was differently expressed greater in PAECs from HPAH1 as compared to controls (PLACS8) with a splice-
variant (PLAC8-203) identified as responsible for positive regulation of cell proliferation and negative regulation
of apoptosis. *p-values adjusted for multiple comparisons based on a false discovery rate (FDR) <0.05. A

Pror < 0.05 was considered significant.

was downregulated in PAECs from PAH subjects; downregulation of beta-catenin and canonical Wnt signaling
has previously been linked to endothelial proliferation in PAH?, observed in a monocrotaline model of PH*,
and tied to carcinogenesis®. Together, these observations support the study of cells from the more proximal
vasculature as an accessible, valid and informative source of tissue from living PAH patients.

Anoikis deregulation is a hallmark of metastasis and occurs in ECs* but has not been described in pulmonary
vascular disease. Our functional assays demonstrated populations of PAH PAECs that maintained replication
competency despite low density media, dilutional cloning and without ECM attachment. Their enhanced ability
to replicate may be due to increased expression of PLACS. This gene has a known splice variant that has been
shown to promote cell proliferation and negatively regulate apoptosis?’. We speculate that upregulation in most
genes related to anoikis represents a compensatory response to the anoikis resistance we observed in functional
assays or that we may be isolating a discrete subpopulation of cells involved in the injury/repair response.
Apoptosis resistance has been demonstrated in rat microvascular ECs?® and in healthy human microvascular
ECs exposed to shear stress”, but the role of apoptosis in EC endotypes in human PAH remains controversial®.
Findings from the present study lend support to the hypothesis that enhanced PAEC proliferation with a cancer-
like phenotype contributes to vascular remodeling in PAH and that this hyperproliferative phenotype exists
in proximal ECs. Importantly, we noticed significant between-subject heterogeneity in both bulk sequencing,
focused pathway analysis and in functional assays. This highlights the observation that current clinical classi-
fications do not accurately capture the differences among patients that precision methods do. While additional
studies are needed to understand endothelial and progenitor-like cross-talk as well as microheterogeneity within
and across the pulmonary circulation, anoikis resistance may serve as a new paradigm to understand PAH.

Several themes related to long-hypothesized but less established mechanisms of PAH emerged in our study
including oxidative stress*!, alterations in the mitochondrial electron transport chain® and fatty acid oxidation®,
sex-hormone signaling®*, and maladapted post-translational modification®. These purported pathways have
been difficult to translate from preclinical models to human PAH. Oxidative stress is theorized to alter cellular
senescence, necrosis and apoptosis in PAH?®, but the exact mechanisms remain controversial®’. Reactive oxygen
species (ROS) stimulate PAEC proliferation®®, trigger angiogenesis®, and activate HIF-1a, a master regulator
in PH*. RAC2 encodes for a Rho-GTPase important for canonical Wnt signaling®, but is also required for
ROS production by NADPH Oxidases-1 and -2. Mitochondrial dysfunction plays a central role in PAH with a
shift toward aerobic glycolysis*! although exact mechanisms remain elusive. In our PAH subjects, CFAP92 was
upregulated, a gene noted to be associated with deficiencies of both Acyl-CoA Dehydrogenase, the first enzyme
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in mitochondrial fatty acid oxidation, and Complex I of the electron transport chain*’. We confirm a role for
metabolic dysfunction and oxidative stress in human patients living with PAH.

PAECs from PAH subjects demonstrated upregulation of SNORA4, an mRNA known to be upregulated by
17-B-estradiol and belonging to a family of RNAs implicated in cell proliferation, angiogenesis, and metastasis
in cancer models*>*4. PAH is a sexually dimorphic disease and sex steroids have been a major focus of experi-
mental and observational studies**; we and others are currently conducting clinical trials to target estradiol and
supplement dehydroepiandrosterone (NCT03648385, NCT03229499, NCT03528902). CENPS, which codes for
an anti-centromere protein, was downregulated in PAEC lines from PAH subjects. Anti-centromere proteins are
well recognized to play a role in tissue fibrosis in CTDs including systemic sclerosis*®. CENPS appears to also play
arole in ubiquitination, a posttranslational modification process that is maladapted during PAH pathogenesis*’.
Ubiquitin proteosome function has emerged as a novel therapeutic target in experimental PH*, but evidence in
human disease has not previously been described.

PoPH is a poorly understood and morbid sub-type of PAH that, for unclear reasons, can be cured with liver
transplantation. Serial samples from a subject with PoPH demonstrated transcriptional changes in biologic
pathways related to the immune response and inflammation that “normalized” after liver transplant, albeit in the
setting of typical immunosuppressive medications after transplant. Pathways responsible for negative regulation
of the inflammatory response and T-cell proliferation were downregulated, suggesting unchecked inflammation
in PoPH and/or cirrhosis. These observations for the first time provide a molecular window during the clinical
course of PoPH that includes the impact of liver transplant (and/or related immunomodulatory medications) on
the pulmonary vasculature. Replicates from a subject with CTD-APAH found to have histopathological evidence
of PVOD demonstrated transcriptional changes in genes that govern the response to hypoxia (e.g., HIF-3), a
hallmark clinical sequela in patients with PVOD. Interestingly, EIF2AK4 was upregulated as the subject worsened,
despite known loss of function in PVOD®. Serial measurements of EC EIF2AK4 gene expression during PVOD
have never been described; as with anoikis, it is possible that increased expression may represent a compensatory
response or that we have captured a sub-population of reparative cells. These discrepant observations underscore
that additional mechanistic work is needed alongside studies of pulmonary vascular EC heterogeneity.

Studies have previously demonstrated more phenotypic similarities across PH Groups than within them
leading to efforts to subphenotype pulmonary vascular disease®. In our study, subjects with precapillary PH had
similar transcriptional profiles and we failed to find evidence of differential gene expression across these groups
(Group 1 PAH vs. precapillary Group 2-5 PH). Two subjects with known HPAH had distinct gene expression
from each other and only one was unique from controls. This supports the argument that similar molecular
processes may underpin EC dysfunction and vascular remodeling in patients with precapillary disease, regardless
of clinical designation, and there is significant within-group heterogeneity in PAH, timely observations given
efforts to refine (and possibly dismantle) clinical classification using precision-based approaches.

This study has limitations. It is not possible to prove that cultured cells are from the pulmonary artery, how-
ever the balloon is wedged only in the pulmonary arteries where it has the greatest and longest contact with
the pulmonary artery wall. We have previously published evidence of typical EC surface expression markers
and several balloons advanced to the right ventricle did not yield results*. The genetic signature of ECs may
change with passaging. We observed transcriptome stability in early passages and all analyses were across fixed
and early passage numbers. Work is underway to characterize within-sample heterogeneity from fresh samples
using single-cell sequencing and to compare the signature of harvested PAECs to that of circulating progenitors.
Performing this analysis on the primary cell population from the balloon tips will help to address the concern
that we are selecting for the most proliferative ECs with early passaging. The imbalance in our clinical groups
including controls (who underwent RHC for clinical evaluation and thus are not pure “healthy controls”) may
have created bias, however our findings are highly relevant to PAH pathobiology, providing face validity. The
downregulation of many genes in PAH cell lines is inconsistent with observations by other groups®-*¢, however
we submit that proximal PAECs from living patients with PAH is a unique population of cells that may not
be directly comparable to prior studies. We do not know the mutation status of most of the patients who pro-
vided samples (including HPAH1, as they have declined genetic testing). The clinical event rate was relatively
low during follow-up (three deaths among subjects with PAH), so we were underpowered to assess whether a
transcriptional signature is associated with disease outcomes, although this is a focus of future studies. Lastly,
we acknowledge that our observations need to be confirmed and developed beyond the transcript level. While
we have started to pair sequencing results with functional assessments of potential importance (e.g., replica-
tion competency and anoikis-resistance) additional work needs to explore mechanisms by which transcription
changes inform vascular cell dysfunction and can be rescued with treatment.

In conclusion, we have demonstrated the validity and promise of using PAECs cultured from routine RHC
balloon tips in living patients with PAH. To our knowledge, this “cell biopsy” approach is a first-in-field window
into dynamic signatures during the PAH disease course that may be harnessed to refine therapeutic selection.
Our findings demonstrate that these cells provide a consistent and reproducible transcriptome profile that dis-
tinguishes between patients with and without pulmonary vascular disease, heralds disease progression (and
remission) and recapitulates established and emerging pathways of interest. We provide evidence of anoikis-
resistance as a novel paradigm for endothelial proliferation in PAH. This method provides an available source of
cells that can be repeatedly characterized for deep phenotyping over the disease course, a long-standing barrier
to translational research in pulmonary vascular disease.
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Methods

Study sample

All patients referred to the Rhode Island Hospital Pulmonary Hypertension Center undergoing RHC for the
purposes of pulmonary vascular disease evaluation and management were eligible. The RHC procedure was not
altered for the purposes of the study. The study was approved by the Lifespan Institutional Review Board (IRB
#016311 and #001218), informed consent was obtained from all participants and all methods were performed
in accordance with the relevant guidelines and regulations. The subjects included here with biological replicates
were re-approached and notified of our intent to feature their clinical trajectory (which may be identifiable by
history) and serial sequencing and signed an additional consent for publication.

All patients were initially evaluated by a PH clinician, and the need for RHC was based on clinical indications.
Repeat RHCs (from which biological replicates were obtained) were performed at the discretion of the treating
clinician. The initial clinical diagnosis of PH was made by the treating clinician. Clinical phenotyping was con-
firmed retrospectively by author N.S. who was blinded to sequencing data. A clinical phenotype was assigned
after all available clinical and hemodynamic data was incorporated and based on the World Symposium on PH
clinical classification'!. When hemodynamic values at the time of RHC with PAEC sampling conflicted with the
clinical PH diagnosis (e.g., pulmonary capillary wedge pressure [PCWP] above 15 mmHg without evidence of
left heart disease, pulmonary vascular resistance [PVR] below 3 Wood units in treated PAH patients), the prior
clinical diagnosis and clinical data were prioritized for Group designation, and index RHC at diagnosis (but not
necessarily PAEC sampling) was confirmed to agree with standard hemodynamic definitions'". Precapillary PH
in patients with a non-Group 1 clinical diagnosis (e.g., left heart or lung disease) was defined as a mean pulmo-
nary artery pressure (mPAP) >20 mmHg, a PCWP <15 mmHg, and a PVR >3 Wood units. Those subjects with
a clinical indication for a RHC but who were determined not to have PH based on a resting mPAP <20 mmHg
and did not meet criteria for exercise-induced PH (total pulmonary resistance <3 mmHg per liter of cardiac
output with exercise)’” were designated as controls. Patients with exercise-induced PH were not included in
our analysis of PAH patients based on prior classification guidelines® and given this is an area of controversy.
Medical records or our research registry were reviewed for clinical data, which was collected at the time of or as
close as possible to (within 6 months) of RHC.

Retention of pulmonary artery catheter (PAC) balloon tips and primary culture

Detailed methods have been previously published and we have not altered the protocol since the original
publication®. Briefly, at the end of the RHC procedures, PACs were retracted into the catheter sheath and both
catheter and sheath were removed from the patient. The tips of the catheters were then advanced out of the
sheath and placed directly into warm media (37 °C) (EndoGRO; Millipore Sigma, Billerica, MA) with the bal-
loon deflated and immediately into a heater for travel to the laboratory. The PAC tips with balloon were placed
directly into one well of a 24 well plate with Attachment Factor Solution (Cell Applications, Inc; San Diego,
CA) and washed with fresh media (EndoGRO-vascular endothelial growth factor [VEGF] complete media kit;
Millipore Sigma, Billerica, MA) every 2 days. Cells were then seeded into T-25 and T-75 flasks until passaged
cells reached confluence over the next 4-5 days. We have confirmed EC phenotype through passage eight with
these methods, as previously described*. PAECs were directly characterized or frozen at passage 3-4. For this
study, all RNA sequencing was performed on passage 3-4 for all samples; passage number was fixed for analysis
of biological replicates and clinical subgroups. Only the PH clinician conducting the RHC was aware of patient
characteristics. The remainder of the study staff were blinded.

RNA sequencing and analysis
Library preparation and RNA sequencing was conducted through Genewiz (Cambridge, MA). All successfully
cultured PAECs harvested between December 2016 and January 2021 were included. Specimens were submit-
ted for sequencing in two batches and grouped randomly within each batch. Libraries were sequenced using a
2 x50 bp paired end rapid run on the Illumina HiSeq2500 platform. Each batch was sequenced all at one time and
equally distributed across sequencing lanes. Technical replicates were not included. Quality control on sequencing
data was performed using FastQC (Babraham Bioinformatics, Cambridge, UK). Raw reads were analyzed using
unsupervised dimensionality reduction via Principal Component Analysis (PCA) and clustering to character-
ize fold changes across serial passages (passage 3 versus 4), across biological replicates and clinical subgroups
(fixed passage numbers; Group 1 PAH vs. controls and Group 1 PAH vs. precapillary PH in Groups 2-5 PH).
P-values were adjusted for multiple comparisons using a Bonferroni-type method based on a false discovery
rate <0.05%. A pgpg <0.05 was considered significant. Reactome and Hallmark pathway analysis of the top dif-
ferentially expressed genes in PAH as compared to controls was performed using DAVID bioinformatics tools®.
In patients with biological replicates, the clinical course informed our approach. Instead of an unsupervised
analysis, we focused on investigating potential mechanisms of disease by a priori selecting gene lists known to
correlate with disease processes. Genes relating to PoPH were selected based on established lists in the literature!*
and for PVOD (including EIF2AK4, the causative gene*’) and the gene ontology (GO) Pathway®! for hypoxia (GO:
0071456), a characteristic hallmark in PVOD. The DAVID database was used to cluster differentially expressed
genes by GO biologic processes, including genes related to anoikis (GO: 0043276).

Single cell and population growth, adhesive forces and characterization of anoikis

Once cells reached confluence, fresh (never frozen) PAECs were shipped in media at ambient temperature
to the Stevens’ laboratory and cells were expanded. Commercial controls were obtained from Lonza (Basel,
Switzerland).
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Single-cell cloning

Single-cell clonogenic assays were performed as described elsewhereS® %. Cells were trypsinized, transferred
to flow cytometry tubes containing standard culture media (EndoGRO-VEGF complete media kit; Millipore
Sigma, Billerica, MA) at 5x 10° cells/tube. Cells were typically seeded at single-cell density on four 96-well plates
containing 200 puL/well of complete media (EndoGRO-VEGF complete media kit; Millipore Sigma, Billerica, MA)
and 1% penicillin-streptomycin using a BD FACS Aria II flow cytometer. Cells were incubated at 37 °C with 5%
CO,-room air for 14 days without a media change. Media was checked on the wells and if needed, media was
added on the 14th day. On the 14th and 28th days, each well was examined by light microscopy to assess colony
size and representative wells were photographed.

Dilutional cloning

For dilutional cloning, PAECs were trypsinized and passed through a cell strainer and were counted using the
Countess Automated Cell Counter (ThermoFisher Scientific). Then, cells were seeded on 24-well plates with den-
sities ranging from 125,000 to 62 cells/well (1:2 dilutions) in 12 different wells containing 1 mL/well of complete
media (EndoGRO-VEGF complete media kit; Millipore Sigma, Billerica, MA) and 1% penicillin-streptomycin.
Cells were incubated at 37 °C with 5% CO,-room air for 10 days without a media change. On the 5th and 10th
day, each well was examined by light microscopy to assess colony size and representative wells were photographed
for the quantification of confluency.

Anoikis assay

To determine anoikis resistance, PAECs were trypsinized, counted, and seeded on ultra-low attachment 6-well
plates (Corning) with a density of 1x 10° cells/well. Cells were incubated at 37 °C and 5% CO, for 1, 3 and
7 days. Viability and cell counts were assessed after 1, 3, and 7 days by Propidium Iodide and Annexin V stain-
ing (ThermoFisher Scientific, Cat # V13242) with the use of flow cytometry. Proliferative capacity was tested by
re-seeding cells on regular attachment culture dishes. Cell growth was tracked every other day until confluence
was reached. Each cell type was evaluated three times, at passages ranging from 3 to 8.

Lectin affinity

PAECs were grown to confluence on gelatin-coated 6-well plates. The cells were trypsinized and triturated to
assure single-cell suspensions, then resuspended in PBS. Cells were centrifuged (212xg) for 5 min and the cell
pellets were resuspended in serum-free media (EndoGRO without supplement). 2.5 x 10° cells were kept in the
bottom of the glass 6-well plate, along with 2 mL of serum-starved media. Helix pomatia and Griffonia simplici-
folia lectins were diluted 1:1000 and added to each well, and then cells were examined by light microscopy to
assess for agglutination. Representative wells were photographed.

Image analysis

All images were taken using a Nikon Eclipse Ts2 light microscope with a 10 x/0.25 Ph1 DL objective. For the
clarity of the images two different filters were used, including an Enhance Local Contrast filter and a bandpass
filter from Fiji Image].

Statistical analysis

Numerical data are reported as mean + SD. One-way ANOVA was used to evaluate differences between cells
within patient groups, with a Friedman multiple comparison post hoc test, as appropriate. Two-way ANOVA
was used to evaluate differences between cells obtained from different patient groups and day variability, with
Tukey’s multiple comparison post hoc test. Significance was considered p <0.05.

Data availability
The datasets generated and analyzed during the current study were deposited to the GEO repository (GSE243193).
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