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Abstract

We present an automatic mortality prediction scheme basdti®unstructured

textual content of clinical notes. Proposing a convolwtiadocument embedding
approach, our empirical investigation using the MIMICiiitensive care database
shows significant performance gains compared to previarsiyloyed methods

such as latent topic distributions or generic doc2vec emingd. These improve-
ments are especially pronounced for the difficult problerpadt-discharge mor-

tality prediction.

1 Introduction

The steadily growing amount of digitized clinical data sashhealth records, scholarly medical
literature, systematic reviews of substances and proesdor descriptions of clinical trials holds
significant potential for exploitation by automatic infaoe and data mining techniques. Besides the
wide range of clinical research questions such as drugtg4idteractions [19] or quantitative popu-
lation studies of disease properties [20], there is a ridbmt@l for applying data-driven methods in
daily clinical practice for key tasks such as decision supj&) or patient mortality prediction [14].
The latter task is especially important in clinical praetighen prioritizing allocation of scarce re-
sources or determining the frequency and intensity of digtharge care.

There has been an active line of work towards establishinbatilistic estimators of patient mor-
tality both in the clinical institution as well as after dimrge [15| 11| 14]. The authors report solid
performance on both publicly available and proprietamichl datasets.

In spite of these encouraging findings, we note that most editiye approaches rely on time series
and demographic information while algorithmic processifighe unstructured textual portion of
clinical notes remains an important, yet, to date, insudfidiy studied problem. The few existing
advances towards tapping into this rich source of inforamatély on term-wise representations such
as tf-idf embeddings [3] or distributions across lateni¢gpaces [12].

This intuitively appears sub-optimal since several stsitiive independently highlighted the impor-
tance of accounting for phrase compositionality manifésteg, in the form of negations [8], or
long-range dependencies in clinical resources. Modelssiblaly rely on point estimates of term
semantics cannot be assumed to adequately capture sucttiites.

In this paper, we aim to address these shortcomings by giegenconvolutional neural network
architecture that explicitly represents not just indiatlierms but also entire phrases or documents
in a way that preserves such subtleties of natural language.

The remainder of this paper is structured as follows: Se&8limtroduces our model and our objec-
tive function. Subsequently, in Sectidh 3, we empiricallglaate the model against two competitive
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baselines on the task of intensive care unit (ICU) mortalitydiction on the popular MIMIC-III
database [5]. Finally, Sectidmh 4 concludes with a briefusion of our findings.

2 Modd

While simple feed-forward architectures, such as the dec2cheme_[10], have been established
as versatile plug-in modules in many machine learning apptins [11, 9], they are inherently
incapable of directly recognizing complex multi-word or ltihgentence patterns. However, con-
structions such aso sign of pneumothoraare frequently encountered in clinical notes and encode
crucial information for the task of mortality prediction.

Following recent work in document classification|[21] andldgue systems [17], we adopt a two-
layer architecture. Lef = (s1, ..., s, denote a patient’s record comprisingentences. Our first
layer independently maps sentenegso sentence vectorss; € R”s. The second layer combines
(x1,...,X,) into a single patient representatieane R”~. For both levels we use convolutional
neural networks (CNNs) with max-pooling which have showoedtent results on binary text classi-
fication tasksl[[7],.[18]. Following work by Severyt al [1€], we use word-embeddings to provide
vector-input for the first CNN layer. Finally, the output afranodel isp(y), y € [0, 1], the estimated
mortality probability, and our objective is the cross epyrd(y, y*) wherey* is the ground-truth la-
bel. The graph rendered in black in Figlfe 1 depicts thiscomsihitecture.
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Figure 1: Model architecture: In black, our basic architeet In red, target replication. In violet,
optional note information; introduced in the next section. The CNN layers are depicyetiluble
arrows. For clarity, we omit the word-vectors that servengsit to the initial CNN.

Target replication The performance of the basic model presented above is pranisit not
yet satisfying. For similar long-sequence prediction peots, [13] andl[2] have noted that it is
beneficial to replicate the loss at intermediate steps. owillg their approach, we compute an
individual softmax mortality probability; (y|x;) for every sentencé = 1...n and incorporate.
additional cross entropy terms into our final objective. &oprpusD containing patients, . .. dy
and corresponding labelg, . . . d} we seek to minimize:

L= Z g(d(j) , y*(j)) (1)
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R can be interpreted as the average prediction error at thersms level, effectively bringing the
classification loss closer to the word-level and regulagzhe first CNN to learn sentence represen-
tations tailored to the mortality prediction problem. Thghar-parametek determines the strength
of the regularizer.

Incor porating note information End-to-end neural network architectures such as ours dtiow
easy incorporation of additional information that can @age predictive power. Every note in our
collection has aategoryassociated such amursing physicianor social work Providing this in-
formation to our classifier can help to reliably assess thgoitance of individual sentences for the



classification task. To exploit this information, we emb#d 4 categories into a vector spaRé’c
and concatenate every sentence vegtawith its associated category vectar

3 Experiments

We evaluate the proposed method on three standardized IGtlityoprediction tasks. On the basis
of a patient’s electronic health record, we predict whethempatient will die (1) during the hospital

stay, (2) within 30 days after discharge, or, (3) within 1yafter discharge, and report AUC as an
evaluation measure.

3.1 Data

MIMIC-III [%]is an openly-accessible critical care dataeacomprising 46,520 patients with 58,976
hospital stays. It contains measurements of patient dtateugh vital sign, lab tests and other vari-
ables) as well as procedures and treatments. Crucialligagtantains over 2 million unstructured
textual notes written by healthcare providers.

Following the data filtering and pre-processing steps lin {83} restrict to adults*18 years old)
with only one hospital admission. Most importantly, we extg notes from thdischarge summary
category and any notes recorded after the patient was digha This results in 31,244 patients
with 812,158 notes. 13.82% of patients died in the hosBt@0% were discharged and died within
thirty days, and 12.06% were discharged and died within & w4 randomly sample 10% of the
patients for the test set, and 10% for the validation set.réh@aining 80% of the patients are used
during training. We construct the vocabulary by keeping38@K most frequent words across all
notes and replace all the words which are not part of the udaapwith an out-of-vocabulary token.

3.2 Basedlines

LDA based model We recreate the LDA-based Retrospective Topic Model frofn TBis model

is the state-of-the-art method for mortality predictionumstructured data from MIMIC 1. We recre-
ate the model on MIMIC 111, and closely follow their prepr@sing and hyperparameter settings. We
tokenize each note and remove all stopwords using the Omix&trd list]. The vocabulary is con-
structed as the union of the 500 most informative words irhgeatient’s note based on a tf-idf
metric. All words which are not part of the vocabulary are oeed. We keep the number of top-
ics to be 50 and set the LDA priors for the topic distributi@msl the topic-word distributions to
a=—-22__andjs = respectively. We train a separate linear kernel SVM on

numberT opics vocabularySize’

the per-note topic distributions to predict the mortality éach task.

Since SVM classifiers are sensitive to significant classailianfices, we follow. 3] in randomly sub-
sampling the patients who did not die in the training setsetich a ratio of 70%/30% between
the negative and positive class. We do not modify the distidim of classes within the test and
validation set. The LDA vectors are trained on the entirening data, but the SVM classifiers are
trained using the vectors from the down-sampled training cely.

Feed-forward Neural Network As our second baseline we use the popular distributed bag of
words (DBOW) scheme proposed by Le and Mikolovi [10]. In a en§initial experiments, we
determined the DBOW architecture (rather than the disteithmemory alternative) and an embed-
ding space dimensionality db0 to be optimal in terms of accuracy and generality. Using e
pre-processing as for the LDA baseline, we train sepana¢aitiSVMs for each task.

3.3 Parametersand Pretraining

We pre-train 50-dimensional word vectors on the trainingdesing the word2vec implementation
of the gensim|[16] toolbox. Our word-level CNN uses 50 filtefssizes 3, 4 and 5 resulting in a
sentence representation of sig = 150. We embed categories iB- = 10 dimensional space
and use 50 filters of size 3 for the sentence-level CNN regplti a patient representation of size
Dp = 50. Furthermore, we regularize the fully connected layer fefour final softmax by 12-
regularization on the weights and dropout with keep prdhipi0i.8.
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3.4 Reaults

Table[1 summarizes the results of the three models on ab.taskross all methods there seems to
be a general tendency that labels further in the future amdendo predict. We observe that both
neural models are superior to the LDA baseline, in partiooitethe two harder tasks. Furthermore,
our two-level CNN model outperforms doc2vec by a signifiaaargin on all tasks.

Table 1: MIMIC-I1I Mortality Prediction AUC

Task LDA doc2vec CNN

Hospital 0.930 0.930 0.963
30-day 0.800 0.831 0.858
1l-year 0.790 0.824 0.853

To highlight the effectiveness of the target replicatioablE[2 shows the results of our model with
and without target replication. We report on 30-days pastithrge, but performance on the other
tasks is comparable.

Table 2: Performance analysis for target replication

Model without target replication  with target replication
AUC  0.682 0.858

The results of our CNN show that modeling sentence and docustiecture explicitly results in
noticeable performance gains. In addition, learning se@eaepresentations and training them in
our regularizer on the classification task, enables us tieveta patient’'s most informative sen-
tences. This allows an inspection of the model’s featuries)as to LDA's topic distributions but
on the sentence level. This stands in stark contrast to ém®2generic document representations.
To showcase these features, Tdlle 3 shows a patient’s topeiitences indicating likelihoods of
survival and death respectively.

Table 3: The three highest and three lowest scoring sergarfamne patient in the 1-year task.

P(survival) high the remaining support lines are unchanged
no effusion .
the cardiomediastinal contours are normal .

P(survival) low  now found to have metastatic lesions in trairb.
impression UNK multiple large enhancing masses within ttaénbwith
— surrounding vasogenic edema most consistent with .
enhancing lesions in the right temporal lobe and right marbconsistent
— with metastatic disease .

While most patients’ top-scoring sentences look promisingareful study of the predictions reveals
that some neutral sentences can be ranked too highly irr giteetion. This is due to the model’'s
inability to appropriately handle sentences that do ngp beldistinguish the two classes. We plan
to address this in the future by a more advanced attentiomamézm.

4 Conclusion

In this paper we developed a two-layer convolutional nemealvork for the problem of ICU mortal-
ity prediction. On the MIMIC-III critical care database omodel outperforms both existing BOW
approaches and the popular doc2vec neural document emigggdhnique on all three tasks. We
conclude that accounting for word and phrase compositityrialcrucial for identifying important
text patterns. Such findings have impact beyond the immeda@ttext of automatic prediction tasks
and suggest promising directions for clinical machinerégag research to reduce patient mortality.
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