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Abstract

We present an automatic mortality prediction scheme based on the unstructured
textual content of clinical notes. Proposing a convolutional document embedding
approach, our empirical investigation using the MIMIC-IIIintensive care database
shows significant performance gains compared to previouslyemployed methods
such as latent topic distributions or generic doc2vec embeddings. These improve-
ments are especially pronounced for the difficult problem ofpost-discharge mor-
tality prediction.

1 Introduction

The steadily growing amount of digitized clinical data suchas health records, scholarly medical
literature, systematic reviews of substances and procedures, or descriptions of clinical trials holds
significant potential for exploitation by automatic inference and data mining techniques. Besides the
wide range of clinical research questions such as drug-to-drug interactions [19] or quantitative popu-
lation studies of disease properties [20], there is a rich potential for applying data-driven methods in
daily clinical practice for key tasks such as decision support [6] or patient mortality prediction [14].
The latter task is especially important in clinical practice when prioritizing allocation of scarce re-
sources or determining the frequency and intensity of post-discharge care.

There has been an active line of work towards establishing probabilistic estimators of patient mor-
tality both in the clinical institution as well as after discharge [15, 1, 4]. The authors report solid
performance on both publicly available and proprietary clinical datasets.

In spite of these encouraging findings, we note that most competitive approaches rely on time series
and demographic information while algorithmic processingof the unstructured textual portion of
clinical notes remains an important, yet, to date, insufficiently studied problem. The few existing
advances towards tapping into this rich source of information rely on term-wise representations such
as tf-idf embeddings [3] or distributions across latent topic spaces [12].

This intuitively appears sub-optimal since several studies have independently highlighted the impor-
tance of accounting for phrase compositionality manifested, e.g., in the form of negations [8], or
long-range dependencies in clinical resources. Models that solely rely on point estimates of term
semantics cannot be assumed to adequately capture such interactions.

In this paper, we aim to address these shortcomings by presenting a convolutional neural network
architecture that explicitly represents not just individual terms but also entire phrases or documents
in a way that preserves such subtleties of natural language.

The remainder of this paper is structured as follows: Section 2 introduces our model and our objec-
tive function. Subsequently, in Section 3, we empirically evaluate the model against two competitive
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baselines on the task of intensive care unit (ICU) mortalityprediction on the popular MIMIC-III
database [5]. Finally, Section 4 concludes with a brief discussion of our findings.

2 Model

While simple feed-forward architectures, such as the doc2vec scheme [10], have been established
as versatile plug-in modules in many machine learning applications [11, 9], they are inherently
incapable of directly recognizing complex multi-word or multi-sentence patterns. However, con-
structions such asno sign of pneumothoraxare frequently encountered in clinical notes and encode
crucial information for the task of mortality prediction.

Following recent work in document classification [21] and dialogue systems [17], we adopt a two-
layer architecture. Letd “ xs1, . . . , sny denote a patient’s record comprisingn sentences. Our first
layer independently maps sentencessi to sentence vectorsxi P R

DS . The second layer combines
xx1, . . . ,xny into a single patient representationx P R

DP . For both levels we use convolutional
neural networks (CNNs) with max-pooling which have shown excellent results on binary text classi-
fication tasks [7], [18]. Following work by Severynet al [18], we use word-embeddings to provide
vector-input for the first CNN layer. Finally, the output of our model isppyq, y P r0, 1s, the estimated
mortality probability, and our objective is the cross entropy lpy, y‹q wherey‹ is the ground-truth la-
bel. The graph rendered in black in Figure 1 depicts this basic architecture.
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Figure 1: Model architecture: In black, our basic architecture. In red, target replication. In violet,
optional note informationzi introduced in the next section. The CNN layers are depicted by double
arrows. For clarity, we omit the word-vectors that serve as input to the initial CNN.

Target replication The performance of the basic model presented above is promising but not
yet satisfying. For similar long-sequence prediction problems, [13] and [2] have noted that it is
beneficial to replicate the loss at intermediate steps. Following their approach, we compute an
individual softmax mortality probabilitypipy|xiq for every sentencei “ 1 . . . n and incorporaten
additional cross entropy terms into our final objective. Fora corpusD containing patientsd1, . . . dN
and corresponding labelsy‹

1
, . . . d‹

N we seek to minimize:

L “
ÿ

pdpjq,y‹pjqqPD

Lpdpjq, y‹pjqq (1)

Lpd “ xs1, . . . , sny, y‹q “ lpy, y‹|xq ` λR “ lpy, y‹|xq `
λ

n

n
ÿ

i“1

lipy, y
‹|xiq (2)

R can be interpreted as the average prediction error at the sentences level, effectively bringing the
classification loss closer to the word-level and regularizing the first CNN to learn sentence represen-
tations tailored to the mortality prediction problem. The hyper-parameterλ determines the strength
of the regularizer.

Incorporating note information End-to-end neural network architectures such as ours allowfor
easy incorporation of additional information that can increase predictive power. Every note in our
collection has acategoryassociated such asnursing, physicianor social work. Providing this in-
formation to our classifier can help to reliably assess the importance of individual sentences for the
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classification task. To exploit this information, we embed all 14 categories into a vector spaceRDC

and concatenate every sentence vectorxi with its associated category vectorzi.

3 Experiments

We evaluate the proposed method on three standardized ICU mortality prediction tasks. On the basis
of a patient’s electronic health record, we predict whetherthe patient will die (1) during the hospital
stay, (2) within 30 days after discharge, or, (3) within 1 year after discharge, and report AUC as an
evaluation measure.

3.1 Data

MIMIC-III [5] is an openly-accessible critical care database, comprising 46,520 patients with 58,976
hospital stays. It contains measurements of patient state (through vital sign, lab tests and other vari-
ables) as well as procedures and treatments. Crucially, it also contains over 2 million unstructured
textual notes written by healthcare providers.

Following the data filtering and pre-processing steps in [3], we restrict to adults (ě18 years old)
with only one hospital admission. Most importantly, we exclude notes from thedischarge summary
category and any notes recorded after the patient was discharged. This results in 31,244 patients
with 812,158 notes. 13.82% of patients died in the hospital,3.70% were discharged and died within
thirty days, and 12.06% were discharged and died within a year. We randomly sample 10% of the
patients for the test set, and 10% for the validation set. Theremaining 80% of the patients are used
during training. We construct the vocabulary by keeping the300K most frequent words across all
notes and replace all the words which are not part of the vocabulary with an out-of-vocabulary token.

3.2 Baselines

LDA based model We recreate the LDA-based Retrospective Topic Model from [3]. This model
is the state-of-the-art method for mortality prediction onunstructured data from MIMIC II. We recre-
ate the model on MIMIC III, and closely follow their preprocessing and hyperparameter settings. We
tokenize each note and remove all stopwords using the Onix stopword list1. The vocabulary is con-
structed as the union of the 500 most informative words in each patient’s note based on a tf-idf
metric. All words which are not part of the vocabulary are removed. We keep the number of top-
ics to be 50 and set the LDA priors for the topic distributionsand the topic-word distributions to
α “ 50

numberTopics
andβ “ 200

vocabularySize
, respectively. We train a separate linear kernel SVM on

the per-note topic distributions to predict the mortality for each task.

Since SVM classifiers are sensitive to significant class-imbalances, we follow [3] in randomly sub-
sampling the patients who did not die in the training sets to reach a ratio of 70%/30% between
the negative and positive class. We do not modify the distribution of classes within the test and
validation set. The LDA vectors are trained on the entire training data, but the SVM classifiers are
trained using the vectors from the down-sampled training sets only.

Feed-forward Neural Network As our second baseline we use the popular distributed bag of
words (DBOW) scheme proposed by Le and Mikolov [10]. In a range of initial experiments, we
determined the DBOW architecture (rather than the distributed memory alternative) and an embed-
ding space dimensionality of400 to be optimal in terms of accuracy and generality. Using the same
pre-processing as for the LDA baseline, we train separate linear SVMs for each task.

3.3 Parameters and Pretraining

We pre-train 50-dimensional word vectors on the training data using the word2vec implementation
of the gensim [16] toolbox. Our word-level CNN uses 50 filtersof sizes 3, 4 and 5 resulting in a
sentence representation of sizeDS “ 150. We embed categories inDC “ 10 dimensional space
and use 50 filters of size 3 for the sentence-level CNN resulting in a patient representation of size
DP “ 50. Furthermore, we regularize the fully connected layer before our final softmax by l2-
regularization on the weights and dropout with keep probability 0.8.

1www.lextek.com/manuals/onix
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3.4 Results

Table 1 summarizes the results of the three models on all tasks. Across all methods there seems to
be a general tendency that labels further in the future are harder to predict. We observe that both
neural models are superior to the LDA baseline, in particular on the two harder tasks. Furthermore,
our two-level CNN model outperforms doc2vec by a significantmargin on all tasks.

Table 1: MIMIC-III Mortality Prediction AUC

Task LDA doc2vec CNN

Hospital 0.930 0.930 0.963
30-day 0.800 0.831 0.858
1-year 0.790 0.824 0.853

To highlight the effectiveness of the target replication, Table 2 shows the results of our model with
and without target replication. We report on 30-days post-discharge, but performance on the other
tasks is comparable.

Table 2: Performance analysis for target replication

Model without target replication with target replication

AUC 0.682 0.858

The results of our CNN show that modeling sentence and document structure explicitly results in
noticeable performance gains. In addition, learning sentence representations and training them in
our regularizer on the classification task, enables us to retrieve a patient’s most informative sen-
tences. This allows an inspection of the model’s features, similar to LDA’s topic distributions but
on the sentence level. This stands in stark contrast to doc2vec’s generic document representations.
To showcase these features, Table 3 shows a patient’s top fivesentences indicating likelihoods of
survival and death respectively.

Table 3: The three highest and three lowest scoring sentences of one patient in the 1-year task.

P(survival) high the remaining support lines are unchanged.
no effusion .
the cardiomediastinal contours are normal .

P(survival) low now found to have metastatic lesions in her brain .
impression UNK multiple large enhancing masses within the brain with

ãÑ surrounding vasogenic edema most consistent with .
enhancing lesions in the right temporal lobe and right mid brain consistent

ãÑ with metastatic disease .

While most patients’ top-scoring sentences look promising, a careful study of the predictions reveals
that some neutral sentences can be ranked too highly in either direction. This is due to the model’s
inability to appropriately handle sentences that do not help to distinguish the two classes. We plan
to address this in the future by a more advanced attention mechanism.

4 Conclusion

In this paper we developed a two-layer convolutional neuralnetwork for the problem of ICU mortal-
ity prediction. On the MIMIC-III critical care database ourmodel outperforms both existing BOW
approaches and the popular doc2vec neural document embedding technique on all three tasks. We
conclude that accounting for word and phrase compositionality is crucial for identifying important
text patterns. Such findings have impact beyond the immediate context of automatic prediction tasks
and suggest promising directions for clinical machine learning research to reduce patient mortality.
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