
Talking Heads: Understanding Inter-layer
Communication in Transformer Language Models

Jack Merullo
Department of Computer Science

Brown University
jack_merullo@brown.edu

Carsten Eickhoff
School of Medicine

University of Tübingen
carsten.eickhoff@uni-tuebingen.de

email

Ellie Pavlick
Department of Computer Science

Brown University
ellie_pavlick@brown.edu

Abstract

Although it is known that transformer language models (LMs) pass features from
early layers to later layers, it is not well understood how this information is repre-
sented and routed by the model. By analyzing particular mechanism LMs use to
accomplish this, we find that it is also used to recall items from a list, and show that
this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model
to the order of items in the prompt. Specifically, we find that models write into
low-rank subspaces of the residual stream to represent features which are then read
out by specific later layers, forming low-rank communication channels between
layers. By decomposing attention head weight matrices with the Singular Value
Decomposition (SVD), we find that previously described interactions between
heads separated by one or more layers can be predicted via analysis of their weight
matrices. We show that it is possible to manipulate the internal model representa-
tions as well as edit model weights based on the mechanism we discover in order
to significantly improve performance on our synthetic Laundry List task, which
requires recall from a list, often improving task accuracy by over 20%. Our analysis
reveals a surprisingly intricate interpretable structure learned from language model
pretraining, and helps us understand why sophisticated LMs sometimes fail in
simple domains, facilitating future analysis of more complex behaviors.

1 Introduction

Despite the impressive capabilities of LMs, their practical use is often limited because of seemingly
arbitrary sensitivities to prompts. These failure cases are particularly troubling because they are
not systematic; it is very difficult to predict when, for example, the order of information seemingly
randomly causes a model to fail [Pezeshkpour and Hruschka, 2023, Liu et al., 2024, Li and Gao,
2024, Zheng et al., 2024, Zhou et al., 2023], or the format of a prompt hurts performance [Liu et al.,
2023, Sclar et al., 2023, Zhao et al., 2021, Lu et al., 2022, Webson and Pavlick, 2022]. As LLMs
become increasingly ubiquitous, we will require more principled ways of anticipating and remedying
unstable or unwanted behaviors [Yu et al., 2024, Yong et al., 2023]. Understanding the mechanisms
in play within LLMs, and connecting those mechanisms to behavior, could enable such principled
approaches.

Preprint. Under review.

ar
X

iv
:2

40
6.

09
51

9v
1

 [
cs

.C
L

]
 1

3
Ju

n
20

24

5 10 15 20
0

0.2

0.4

0.6

0.8

Accuracy of predicting the last object
above all others (N=5000)

Number of objects

A
cc

ur
ac

y

Loading [MathJax]/extensions/MathMenu.js

Accuracy on Laundry List Data

per # of Objects

Number of Objects

Ac
cu

ra
cy

Context:

Today, when I go to the store, I will buy a plate, a
pear, a pen, and a textbook.

Continuation 1:

First, I will get the plate, the pen, the pear,
and then the  

 textbook 
Continuation 2: 
First, I will get the textbook, the pen, the
pear, and then the 

 textbook

Figure 1: Language models are sensitive to arbitrary changes in a prompt, for example the order in
which objects are listed (right). This problem is more pronounced as the number of objects increases
(left) even though it is not obvious where the issue stems from in the model. We broadly explore how
information is routed through a model and focus on a mechanism that is in part responsible for this
(in)ability.

In this paper, we consider a simple laundry list task that exhibits one such undesirable instability.
Specifically: Transformer language models (LMs) struggle to reliably recall items from a list as the
length of the list increases, and performance can vary wildly depending on the position of the item in
the list that is being recalled (Figure 1). This instability is not obvious from the model architecture
itself–i.e., unlike their predecessors Elman [1991], Transformers [Vaswani et al., 2017] do not have
built-in biases for some positions in a sequence over others. We thus use this task as a case study in
order to connect the low-level emergent mechanisms which are encoded during LM pretraining to
observable behavior, and illustrate as a proof of concept that a precise mechanistic understanding of
LMs can be used to explicate and, perhaps, remedy model performance in practice.

Specifically, building on recent work in circuit analysis [Elhage et al., 2021, Wang et al., 2022,
Goldowsky-Dill et al., 2023, Quirke and Barez, 2024, Merullo et al., 2024, Hanna et al., 2023], we
demonstrate how a Transformer LM (GPT2 small) passes information from early laters to later ones
using subspaces which we call communication channels. We introduce a method using the Singular
Value Decomposition to help find these channels by reading off of the model weights directly. We
focus on two examples of such channels (inhibition and duplicate detection), and find that they are
are very low rank (1 or 2 dimensions), easily interpretable, and causally important for specific model
behaviors. Specifically, our contributions are as follows:

• We explore a fundamental question in interpretability on how information passed from layer
to layer in a transformer is represented internally. We find “communication channels" that
connect attention heads separated by several layers.

• We introduce a method to decompose weight matrices which helps us find such communica-
tion channels. This method can be performed directly on the weights of models.

• We show that this mechanism plays a role in prompt sensitivity on an item recall task that
otherwise seems idiosyncratic, and that intervention in the mechanism can be used to affect
downstream behavior in a way that improves performance.

Our findings indicate more broadly that neural networks are capable of learning intricately structured
representations from self-supervised pretraining without inductive biases, which might have important
implications for the emergence of abstract and content-independent operations, and for developing
methods for steering and understanding these models (see Discussion, §7).

2 Background

Throughout our work, we consider decoder-only transformer language models and primarily use
GPT2-Small. The modern attention mechanism used by these models Vaswani et al. [2017] uses

2

multiheaded attention, where Query and Keys control which tokens from earlier in context are attended
to and Value and Output matrices control what information is moved from these tokens. An important
abstraction we use in our work relies on rewriting these matrices as the products QK (Query*Key)
and OV (Output*Value)1. For an individual head, these matrices are themselves low-rank compared
to the embedding dimension of the network. This is a useful property as we are motivated by looking
for subspaces that are written into/read from by these matrices and this reduces the search space.

In order to ground our findings about inter-layer communication to real model behaviors, we focus
on attention head interactions which we already understand and work backwards to determine how
they communicate. Recent works in circuit analysis provide detailed explanations of how different
model components interact on controlled datasets. In particular, we make use of the Indirect Object
Identification (IOI) circuit discovered in Wang et al. [2022]. We use GPT2-Small, to study three
specific types of interactions between heads: cases where heads write information that is used by the
keys, queries, or values of later heads.

When we refer to an attention head as 3.0 or 7.9, this means layer 3, head 0 or layer 7 head 9.

Three Types of Composition In attention heads, there are three ways that earlier heads can
contribute to the processing done downstream. In all cases, information is written into the residual
stream by the OV matrix of an earlier head, and read back out by either the Query, Key, or Value
matrices of a later head. These concepts are introduced in Elhage et al. [2021]. We also provide an
example of each composition type that we examine further in Section 3. We look for communication
channels in one of each type of composition. These are previous token to induction head composition
(key) [Olsson et al., 2022, Singh et al., 2024, Reddy, 2023], duplicate token to inhibition head
composition (value), and inhibition to mover head composition (query) [Wang et al., 2022]. The
variation in the way these heads communicate only changes how we calculate the composition score
[Elhage et al., 2021] and individual implementation of the communication, but we do not make claims
about how these types of composition differ from each other in more meaningful ways.

The Inhibition-Mover Subcircuit We build on work from IOI [Wang et al., 2022] which documents
a circuit that appears in multiple tasks [Merullo et al., 2024]. This circuit includes mover heads, which
copy tokens from context to the output, and inhibition heads which (optionally) block the mover
heads’ attention to certain tokens and thus prevent certain tokens from being copied. Inhibition heads
are known to receive signals from duplicate token head value vectors which help inform which tokens
to inhibit. In GPT2-Small, the known inhibition heads are 7.3, 7.9, 8,6, and 8.10 and we consider
their communication to the mover head 9.92. This is the example we use for query composition
experiments. In Section 5 we explore this circuit’s role in problems of prompt sensitivity and a
learned structure to control the indexing of tokens in the context window.

3 Identifying Communication Channels in Low-Rank Subspaces

In this section, we test the hypothesis that model components like attention heads communicate
through signals in low-rank subspaces of the residual stream and that we can find these signals in the
weights themselves. We investigate one case of each type of composition outlined in Section 2 and
find positive evidence for this hypothesis with query and value composition in 1 and 2 dimensional
subspaces, but not key composition (see Appendix A). Because we are able to localize the query and
value signals to such small representation spaces, we find that we are able to interpret and control
these features with intervention experiments in Section 4.

3.1 Composition Score

The Composition Score (CS) is a weight based metric of how much two weight matrices ‘talk’ to
each other when they are separated by layers. That is, W1 might write information into a subspace in
the residual stream that is read out by W2. In Query composition for example, W1 is the OV matrix

1Following convention, we refer to this matrix as OV, but the Transformer Lens library implements right-hand
matrix multiplication so we actually use VO. This does not effect our results

2for simplicity we only consider this mover head, but we do not find the choice matters much.

3

0.65

0.7

0 20 40 60

0.04

0.06

0.08

0.1

0 20 40 60 0 20 40 60 0 20 40 60

Avg. Comp. Score
Composition w/
Mover Head
Unmodified Model
Remove Component

Inhibition and Composition Scores for Different Inhibition Heads to Mover Head 9.9

In
hi

bi
tio

n
S

co
re

C
om

po
si

tio
n

S
co

re

Component Index

7.3 7.9 8.6 8.10

Figure 2: Showing the relationship between the composition score (weight-based, bottom) and
inhibition score (data-based, top) between various inhibition head components and mover head 9.9
for the IOI task. The inhibition of each inhibition head is generally highly concentrated in one or
two components of the matrix, removing it causes a large drop in the later mover head’s ability to
downweight one of the names. We therefore show that we can use the composition score when
considering decomposed matrices.

of some head, and W2 is the QK matrix.

CS(W1,W2) =
||W1W2||F

||W1||F ∗ ||W2||F
(1)

We take advantage of the fact that circuit analysis in works like Wang et al. [2022] tells us that, for
example, head 3.0 (duplicate head) interacts with head 7.9 (inhibition head) through value composition
and 7.9 with 9.9 (mover head) in query composition. We initially use the composition score in
Equation 1 to try predict these interactions in the weights, but find these results are largely noisy
and uninterpretable. This is briefly demonstrated in Appendix G. We find that despite empirically
knowing interactions exist between heads, we do not find they reliably have higher composition
scores than any random head. Although the composition score has been shown to be useful on small
toy models [Elhage et al., 2021], previous work has also shown that on larger models, the signal the
composition score conveys is extremely noisy [Singh et al., 2024].

3.2 Composition with Decomposed Component Matrices

The composition is not useful on its own because otherwise important signals are possibly washed
out by the fact that every head reads from/writes into many subspaces to some extent. Therefore,
we turn to the Singular Value Decomposition (SVD), defined as W = USVT, on the QK and OV
matrices to decompose the attention heads into orthogonal components which determine the input
and output spaces of the matrix. This allows us to individually view subspaces read from/written into
ordered by the amount of variance of the transformation of the matrix they account for. This helps
us answer our original hypothesis that model components communicate across layers in low-rank
subspaces of the residual stream.

If d is the dimension of the residual stream (768d in GPT2) and h is the dimension of an attention
head (64d in GPT2), OV, QK ∈ IRdxd and are both rank-h. This is because attention heads project
down from the residual stream to h (e.g., the job of the V matrix) and then back up to d (e.g., the job
of the O matrix). Therefore, there are only h non-zero singular values for each matrix.

Equation 2 shows a useful identity of the SVD: we can rewrite some weight matrix W as the sum of
the outer products of the left and right singular vectors, scaled by the corresponding singular value.

W =

h∑
i=0

si ∗Ui ⊗Vi (2)

4

Rewriting the original matrix in this way is useful because we can now use the sum of any subset of
component matrices in the composition score (Equation 1). Let the zero-th component of head 3.0
be written as 3.0.0. We can write the composition score between the 3.0.0 OV matrix and the 7.9
OV matrix as CS(OV3.0.0,OV7.9). Since each component matrix is an outer product of two vectors,
each matrix has rank-1. This gives us a way to disentangle the full signal of a head into the sum of its
component rank-1 matrices, or the subspaces that the head is able to read from/write to.

We find that decomposing weight matrices this way is very effective at cleaning up the composition
score signal. We find attention heads that have very high relative composition scores with one
component matrix of another head. For example, the second component of head 8.6 (referred to as
8.6.2) composes far more with mover head 9.9 than any of the other 63 components in 8.6 (5 standard
deviations higher than the average) or when considering the full matrix as in CS(OV8.6,QK9.9).
The bottom graphs in Figure 2 show these results for the inhibition heads. All of the inhibition head
exhibit a similar phenomenon of single component dominance. The duplicate token head 3.0 also
value-composes with inhibition heads in a similar way, using two components (3.0.1 and 3.0.2) far
more than any other. Results are shown in Appendix C.

We can also use this decomposition to find specific pairs of heads that talk more than others. With the
knowledge that two heads talk through a specific component of one head, we can find the other heads
that communicate through this pathway. Doing so lets us find the signal encoding almost the full IOI
circuit in GPT2-Small directly from the weights, without running the model. We outline these results
in Appendix G.

We interpret these as communication channels between heads, but we would still like to establish
these channels as directly affecting downstream component’s behavior. We verify this is the case
through a weight editing in Section 3.3 and through activation interventions in Section 4.

3.3 Model Editing

In the previous section, we found that within a given head, individual component matrices encode a
much stronger composition signal than that encoded by the global matrix. This makes the composition
score a much more useful tool than when only considering full-rank matrices. In this section, we verify
that these identified components are indeed communication channels that carry causally important
signals for model behaviors. We first look at the inhibition head channels.

3.3.1 The IOI Dataset and Inhibition Score

Because the behavior of the inhibition heads was initially described on the Indirect Object Identifica-
tion (IOI) dataset in Wang et al. [2022], we explore the inhibition communication channels on that
domain first. An example of the dataset is as follows: “Then, John[S1] and Mary[IO] went to the
store. John[S2] gave a drink to". Here, the two name options are possible, but generating “John"
does not make sense. The role of the inhibition heads are to tell the mover head (9.9) to attend less to
the first John token (and as a result copy the remaining Mary token). We thus define the Inhibition
Score as the degree to which the mover head prefers attending to the IO token (Mary) over the S1
token (the first John). This is simply the attention score to the IO minus the attention score to the S1.
Intuitively, full attention to the IO token would give a score of 1.0, -1.0 would be full attention to S1
(inverse inhibition), and 0.0 would be equal attention to both (no inhibition).

3.3.2 Results

Our editing technique is simply to zero out one component at a time and across a dataset of IOI
examples test how this affects. One way to think about this is zeroing out one singular value of e.g.,
the OV or matrix, or subtracting one of the component matrices from the sum in Equation 2. We
must make the edit to the decomposition and then split the matrices back out so that we can run the
model. Given OV = USVT , after zeroing out some singular value in S we can set the Output and
Value matrices to be U

√
S and

√
SVT , respectively. In the top graphs of Figure 2, we show that

removing the speculated communication channel from the inhibition heads almost always results
in a significant decrease in the model’s ability to pass the inhibition signal, with the exception that
changing 7.3 does not have a strong effect on its own. In general removing the single component with
the highest composition score reduces the Inhibition score by 7-14%, and it is important to consider
that this is only when changing a single component in one head at a time. We perform additional

5

Head

α * ⃗v +

s2keys
trace 1
trace 2
trace 3
s1keys
s2keys
proj 8.6.2
endqueries
proj 7.9.6
proj 8.10.1
proj 7.3.1
proj 8.6.0

9.9 Queries against S2 projections for
Component Matrices

Inhibition Component Activations Projected into

PCA of Mover Head 9.9 Queries

Queries
8.6.2

7.9.6

8.10.1

7.3.1

⃗v

The entire output space of an  
inhibition component is 1D, so all activations
are some scalar times the singular vector

corresponding to this output space
α ⃗v

Replace the output of the
head with this scaled

vector, adding it to the
residual stream

Figure 3: Because component matrices are rank-1, their output spaces are 1D and interpreting them
becomes easier. On the left, inhibition component activations go to either side of the origin , and
selectively inhiibt the name in either position one or position two in the IOI task. We can scale a
vector lying on this line by some scalar alpha and observe how this changes behavior when we add it
to the residual stream, or replace the output of an attention head with it (right), which we show in
Figure 4.

experiments with removing/modifying multiple of these components in Section 4 and Appendix D.
Thus, we have both behavioral and weight based evidence converging on the interpretation of these
subspaces as meaningful communicatoin channels.

4 Communication Channels Carry Interpretable Content-Independent
Signals

We present further evidence that the communication channels we identify in the model weights carry
causally important signals for affecting model behaviors, but also that they carry content-independent
signals which are easily controllable and interpretable.

Because the component matrices are rank-1 (Equation 2), their outputs lie entirely on 1D subspaces.
This subspace (in our implementation) is the right singular vector corresponding to the index of
the component matrix multiplied by some scalar. Since we have shown that these communication
channels have a significant impact on downstream performance, a natural question is how information
(such as inhibition) is represented along such a simple feature.

4.1 Interventions on Communication Channels

In order to better understand the representations passed through communication channels, we design
interventions that add to or replace information from certain heads with vectors that lie on the output
space of communication channels. Figure 3 provides an outline of the approach. Since a single
component is rank-1, we can set the output of some head to be a point on the output space line and
see how information changes along it.

Our dataset contains 200 examples from the IOI task. We have 100 examples where the IO token
is the first name (“Mary and John...John gave a drink to") and 100 where the S1 token comes first
(“John and Mary... John gave drink to").

On inhibition heads, we find that scaling a single component at a time is enough to switch the attention
of the mover head to the other name. The inhibition score is highest when the S1 token is inhibited,
but as Figure 4 shows, downscaling 8.10.1 only increases inhibition when S1 is first, and decreases it
when IO is first. The opposite is true for upscaling the component. This tells us that the component is
passing a positional signal: either inhibit name one or name two. This is consistent with what Wang
et al. [2022] found, but our intervention shows that we can completely divorce the context from this
ability. Since we are setting the head output to a scaled singular vector from the weights, we are
bypassing the attention mechanism entirely, so non of the information on what to inhibit is coming

6

Made with Streamlit

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.3.1

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.9.6

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

content independent, other than the fact that what it inhibits depends on which name appears first in the

context.

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.6.2

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.10.1

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

This is a quick test on a new dataset to see if the results generalize. I mistakenly thought my original

dataset looked like the following:

Controls

Different prompt format

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.0.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.3.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

These are components also from 8.6 that are possibly important in inhibition. We saw removing
component 0 led to low inhibition but component 1 never really seemed that important, but arguably it

shows some effect in the adding component experiment. This tells us that our metrics don't tell us
everything, and that multiple components in the inhibition heads are important for controlling this info.

7.3.1 was originally thought to be an inhibition head component, but it doesn't really seem to effect
mover head 9.9

Questionably Inhibition Components

John[S1] and Mary[IO] went to the
store…”
"John[IO] and Mary[S1] went to
the store…”

Output of attention head  
is overwritten to be

The attention pattern of each  
head has no effect

α ⃗v⃗v

Effect of Overwriting Attention Head Output as Scaled Component Vector () on the Inhibition Score⃗v

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

Made with Streamlit

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.3.1

Singular Vector Scale
In

hi
bi

tio
n

Sc
or

e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.9.6

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

content independent, other than the fact that what it inhibits depends on which name appears first in the

context.

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.6.2

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.10.1

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

This is a quick test on a new dataset to see if the results generalize. I mistakenly thought my original

dataset looked like the following:

Controls

Different prompt format

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.0.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.3.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

These are components also from 8.6 that are possibly important in inhibition. We saw removing
component 0 led to low inhibition but component 1 never really seemed that important, but arguably it

shows some effect in the adding component experiment. This tells us that our metrics don't tell us
everything, and that multiple components in the inhibition heads are important for controlling this info.

7.3.1 was originally thought to be an inhibition head component, but it doesn't really seem to effect
mover head 9.9

Questionably Inhibition Components

John[S1] and Mary[IO] went to the
store…”
"John[IO] and Mary[S1] went to
the store…”

Output of attention head  
is overwritten to be

The attention pattern of each  
head has no effect

α ⃗v⃗v

Effect of Overwriting Attention Head Output as Scaled Component Vector () on the Inhibition Score⃗v

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e Made with Streamlit

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.3.1

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.9.6

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

content independent, other than the fact that what it inhibits depends on which name appears first in the

context.

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.6.2

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.10.1

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

This is a quick test on a new dataset to see if the results generalize. I mistakenly thought my original

dataset looked like the following:

Controls

Different prompt format

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.0.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.3.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

These are components also from 8.6 that are possibly important in inhibition. We saw removing
component 0 led to low inhibition but component 1 never really seemed that important, but arguably it

shows some effect in the adding component experiment. This tells us that our metrics don't tell us
everything, and that multiple components in the inhibition heads are important for controlling this info.

7.3.1 was originally thought to be an inhibition head component, but it doesn't really seem to effect
mover head 9.9

Questionably Inhibition Components

John[S1] and Mary[IO] went to the
store…”
"John[IO] and Mary[S1] went to
the store…”

Output of attention head  
is overwritten to be

The attention pattern of each  
head has no effect

α ⃗v⃗v

Effect of Overwriting Attention Head Output as Scaled Component Vector () on the Inhibition Score⃗v

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200

−0.3

−0.2

−0.1

0

0.1

0.2

0.3 Duplicate Signal Added to IO

Duplicate Signal Added to S1

Adding the Duplicate Token Head 3.0.[1, 2] Signal
 to IO or S1 Tokens

Duplicate Token Direction Scale

In
hi

bi
tio

n
Sc

or
e

Made with Streamlit

−200 −100 0 100 200

−0.3

−0.2

−0.1

0

0.1

0.2

0.3 Duplicate Signal Added to IO

Duplicate Signal Added to S1

Adding the Duplicate Token Head 3.0.[0, 3] Signal
 to IO or S1 Tokens

Duplicate Token Direction Scale

In
hi

bi
tio

n
Sc

or
e

Duplicate Token Components Control

−200 −100 0 100 200

−0.3

−0.2

−0.1

0

0.1

0.2

0.3 Duplicate Signal Added to IO

Duplicate Signal Added to S1

Adding the Duplicate Token Head 3.0.[1, 2] Signal
 to IO or S1 Tokens

Duplicate Token Direction Scale

In
hi

bi
tio

n
Sc

or
e

Made with Streamlit

−200 −100 0 100 200

−0.3

−0.2

−0.1

0

0.1

0.2

0.3 Duplicate Signal Added to IO

Duplicate Signal Added to S1

Adding the Duplicate Token Head 3.0.[0, 3] Signal
 to IO or S1 Tokens

Duplicate Token Direction Scale

In
hi

bi
tio

n
Sc

or
e

Duplicate Token Components Control

Inhibition Component Control

Singular Vector Scale Singular Vector Scale

Singular Vector Scale Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

In
hi

bi
tio

n
Sc

or
e

Figure 4: We find that the 1D inhibition components and 2D duplicate token components finely
control which name is avoided by the mover head. On the top, we can selectively inhibit either the
first or second name depending on how we scale a vector lying on the 8.10.1 output space. This is
strictly controlling relative position. On the bottom, we find that adding or removing duplicate token
information from the duplicate channel at the IO or S1 tokens also effectively modulates which name
is inhibited. Neither random heads, nor non-communication channel components exhibit these same
effects (right). See Appendix D for results on other heads.

from the value vectors of the IO or S tokens. This tells us that the model is capable of representing
pointers, or storing bindings in the keys of earlier tokens that represent indexed lists, similar to the
finding in Feng and Steinhardt [2023]. We explore this further in Section 5. The bottom of Figure 4
shows that scaling diagonally in a 2D subspace of the duplicate token head and adding the resulting
vector to the residual stream of the IO or S1 token right before the inhibition heads also allows for
modulating the selected name.

Although we get fine control over the attention of the mover head, we have not answered whether this
has a real effect on the output behavior. Additionally, Makelov et al. [2024] argue that interventions
on subspaces, such as the case here, are prone to a subspace illusion in which the effect is not
what it seems. To address this, we measure the Fractional Logit Difference Decrease (FLDD) and
Interchange Accuracy of patching the subspaces in the inhibition channel between minimally different
IOI examples. GPT2-Small achieves an FLDD of 97.5% and and interchange accuracy of 35%. Such
strong results from only patching three 1D subspaces supports the view that these subspaces are a
primary mechanism controlling name selection. On OpenWebText [Gokaslan and Cohen, 2019], we
find that the inhibition heads are primarily active in lists and settings where repetitions should be
avoided, such as “serotonin, dopamine, and..." where the heads will attend from the commas to the
previous chemicals. A natural followup given the IOI results and these observations is to explore
their role as an indexing function, which we do in the Laundry List task.

5 The Inhibition Channel is Crucial in Token Indexing Tasks

Now that we have established the existence of communication channels and their causal role in
model behavior, we can revisit our motivating example on prompt sensitivity in the Laundry List
task. Figure 1 shows an example of the task and an example of an arbitrary seeming failure to minor
variation in the order of presented items. In this section, we explore the hypothesis that the inhibition

7

communication channel presented so far plays a critical role in how the model selects the right context
token to generate next, and reveals a capacity limit that causes the model to fail as the number of
objects increases.

5.1 Laundry List Task

We propose a synthetic task that is designed to activate the inhibition heads, but allows us to test their
effect on an arbitrary number of candidate tokens. An example is given in Figure 1 and more details
on how we generated the data are in Appendix E. Each example first mentions N objects, then N-1,
and the model must predict the missing item. We create a dataset of 250 prompts for each value of N
from 3 to 20.

To complete this prompt, the model needs to recognize the item missing from the second list and
retrieve it from the first list. By shuffling the second list and using a different sentence format, simple
mechanisms (like pattern matching with induction heads) can not be relied on solely to solve the task.
With this setup, we can very naturally increase the number of objects being considered. This lets us
test not only if the inhibition heads are used for indexing candidates, but whether this mechanism’s
behavior changes as it is strained by the number of comparisons that need to be made. The model
has a strong bias to predict the last item, regardless of whether it is correct or not, which causes
performance to drop, so we are also curious if the mechanism connects to that as well.

We find that the inhibition heads are highly active on this task when predicting the last object, like
the analysis in Section 4 would predict. The heads attend to and inhibit the occurrences of all of the
repeated object tokens.

5.2 Intervention Experiments

We repeat the inhibition component intervention from Section 4 where we scale the components in
the inhibition channel. In the multi-object (>2) case, we find that scaling only one component at a
time does not give enough expressive power to change the mover head’s attention to reach all of the
objects (Figure 5, left). Instead it prefers to attend to either the first or last object, seeming to chunk
the remaining objects together as a single point along the line. The bias to ignore information in the
middle has also been observed by Liu et al. [2024].

We traverse the 3D space spanned by the top three inhibition head components (7.9.6, 8.6.2, and
8.6.10) and measure how this changes where the mover head attends, and what the model’s final
prediction is3. In Figure 5 (middle), we visualize this traversal with one dot representing a point in
the space that we query. We run the entire dataset with the inhibition components set at this point,
and the color represents the index of the object that the mover head attends most to. We find that
structure emerges as we add items, where areas of this space represent the first and last object, and
wedges fill in the space for each item that gets added. Eventually (around 9 or 10 items) these wedges
get small and start to fracture (Figure 5, middle bottom). We connect these two phenomena to the
performance of the model: the bias to predict later objects, and the inability to handle longer lists.
We believe the model is not capable of traversing this space well enough on its own, even though it
learned to represent it, and longer lists cause worse performance because the space gets fragmented
into smaller and smaller areas that repersent each item.

We design an intervention where we set the model components in a certain area of the 3D space,
depending on the index of the correct answer and test how much this improves performance. In
Figure 5 (right), we show this causes a sharp increase in the accuracy of the model: 3 object accuracy
goes up from 64% to 86%, and 8 objects goes up to about 51%, about the level of 4 objects in the
unmodified case. Therefore the inhibition channel we identified seems to form part of a more generic,
content-independent subcircuit for indexing items in the previous context.

6 Related Work

There has been significant focus on disentangling features from the representations of language
models and vision models [Olah et al., 2020]. Features have been analyzed at the neuron level

3We test in increments of 10 from [-100, 100] along each axis, including every combination. it’s possible this
is not the optimal range

8

5 Objects
6 Objects

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

7

10 Objects Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 8

Object 9

Object 10

20

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 8

Object 9

Object 10

20

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Object 8

9

6 Objects

Made with Streamlit

3 Objs 4 Objs 5 Objs 6 Objs 7 Objs 8 Objs 9 Objs 10 Objs 20 Objs
0

0.2

0.4

0.6

0.8
No Intervention

Sampling from Inhibition Space

Accuracy on Laundry List Data
per # of Objects

Number of Objects

Ac
cu

ra
cy

Accuracy on Laundry List Data

per # of Objects

Number of Objects

Ac
cu

ra
cy

Made with Streamlit

3 Objs 4 Objs 5 Objs 6 Objs 7 Objs 8 Objs 9 Objs 10 Objs 20 Objs
0

0.2

0.4

0.6

0.8
No Intervention

Sampling from Inhibition Space

Accuracy on Laundry List Data
per # of Objects

Number of Objects

Ac
cu

ra
cy

Object 1

Object 2

Object 3

Object 4

Object 5

6

Figure 5: Scaling the inhibition component for a single head (here 8.10, left) is not expressive
enough to get the mover head to index between the various objects. Scaling the top three inhibition
components (middle) gives us enough expressive power to selectively attend to one of the objects.
Here, one dot represents a run on the corresponding dataset and the color represents the index of
the object the mover head pays the most attention to on average. A surprising structure emerges
that partitions the space according to the index of the objects. However, the neat structure begins
to break down as the number of objects grows around 10 or higher, and affects the mover head’s
ability to attend to the right object, which impacts accuracy. Right: Accuracy improvements as a
result of sampling from inhibition space. The model becomes much more capable of handling a
bigger number of objects in that the accuracy for N objects after the intervention is about as high as
the unaltered model when it sees N/2 objects. However, the representational power of the inhibition
channel reaches capacity as the number of objects increases, and performance can not improve as
much.

[Gurnee et al., 2023, Mu and Andreas, 2020, Dai et al., 2022, Tang et al., 2024] Sparse Autoencoders
and Dictionary Learning [Bricken et al., 2023, Mallat and Zhang, 1993, Cunningham et al., 2023]
attempt to deconstruct activations into more primitive features [Rajamanoharan et al., 2024], which is
similar in spirit to our decomposition. Park et al. [2023] propose a unification of several perspectives
on the linearity of featuers. The Superposition Hypothesis Elhage et al. [2022] posits that linear
features are encoded in interfering ways. Our method is similar in flavor of disentangling tangled
features to make them easier to read off of the weights.

The SVD has been used for interpretability and weight based analysis in the past [Sule et al., 2023,
Praggastis et al., 2022, Martin et al., 2021, beren and Black, 2022].

7 Discussion & Conclusion

Due to the recent and rapid success of language models, there is growing interest in understanding
how they are able to use language so flexibly and solve difficult tasks. Our results contribute
positive evidence that intricate content-independent structure emerges as a result of self-supervised
pretraining. Although similar types of structure were previously thought to be impossible or unlikely
to emerge in LMs [Lake et al., 2017], there is emerging evidence that LM pretraining encourages
models to organize mechanisms into neat subprocesses [Feng and Steinhardt, 2023]. We use weight
decomposition to uncover such structure and contribute to a fundamental understanding on how
models route information between layers, a core part of understanding feature representation in
models. We also show that low-level mechanisms such as those studied here can make real predictions
about prompt sensitivity, a problem that has long plagued the robustness of LMs. The method we
employ for weight analysis also holds promise for inference time steering, model editing, and
automatic circuit discovery. We hope our work promotes future research on the interpretability of
neural networks as well as their responsible deployment, and practical capabilities.

References
beren and Sid Black. The Singular Value Decompositions of Trans-

9

former Weight Matrices are Highly Interpretable. November
2022. URL https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/
the-singular-value-decompositions-of-transformer-weight.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons
in pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8493–8502, 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy_model/index.html.

Jeffrey L. Elman. Distributed representations, simple recurrent networks, and grammatical structure.
Machine Learning, 7(2):195–225, September 1991. ISSN 1573-0565. doi: 10.1007/BF00114844.
URL https://doi.org/10.1007/BF00114844.

Jiahai Feng and Jacob Steinhardt. How do Language Models Bind Entities in Context?, October
2023. URL http://arxiv.org/abs/2310.17191.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
Finding Neurons in a Haystack: Case Studies with Sparse Probing, June 2023. URL http:
//arxiv.org/abs/2305.01610.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
p4PckNQR8k.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253, 2017. doi:
10.1017/S0140525X16001837.

10

https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.lesswrong.com/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://doi.org/10.1007/BF00114844
http://arxiv.org/abs/2310.17191
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/2305.01610
http://arxiv.org/abs/2305.01610
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k

Ruizhe Li and Yanjun Gao. Anchored Answers: Unravelling Positional Bias in GPT-2’s Multiple-
Choice Questions, May 2024. URL http://arxiv.org/abs/2405.03205.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 8086–8098, 2022.

Aleksandar Makelov, Georg Lange, Atticus Geiger, and Neel Nanda. Is this the subspace you
are looking for? an interpretability illusion for subspace activation patching. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=Ebt7JgMHv1.

Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on signal processing, 41(12):3397–3415, 1993.

Charles H. Martin, Tongsu (Serena) Peng, and Michael W. Mahoney. Predicting trends in the
quality of state-of-the-art neural networks without access to training or testing data. Nature
Communications, 12(1):4122, July 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-24025-8.
URL https://www.nature.com/articles/s41467-021-24025-8.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Circuit component reuse across tasks in transformer
language models. In ICLR, 2024.

Jesse Mu and Jacob Andreas. Compositional Explanations of Neurons, June 2020. URL https:
//arxiv.org/abs/2006.14032v2.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Pouya Pezeshkpour and Estevam Hruschka. Large language models sensitivity to the order of options
in multiple-choice questions. arXiv preprint arXiv:2308.11483, 2023.

Brenda Praggastis, Davis Brown, Carlos Ortiz Marrero, Emilie Purvine, Madelyn Shapiro, and Bei
Wang. The SVD of Convolutional Weights: A CNN Interpretability Framework, August 2022.
URL http://arxiv.org/abs/2208.06894.

Philip Quirke and Fazl Barez. Understanding addition in transformers. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
rIx1YXVWZb.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders, 2024.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2023.

11

http://arxiv.org/abs/2405.03205
https://openreview.net/forum?id=Ebt7JgMHv1
https://openreview.net/forum?id=Ebt7JgMHv1
https://www.nature.com/articles/s41467-021-24025-8
https://arxiv.org/abs/2006.14032v2
https://arxiv.org/abs/2006.14032v2
http://arxiv.org/abs/2208.06894
https://openreview.net/forum?id=rIx1YXVWZb
https://openreview.net/forum?id=rIx1YXVWZb

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sensitivity
to spurious features in prompt design or: How i learned to start worrying about prompt formatting.
In The Twelfth International Conference on Learning Representations, 2023.

Aaditya K Singh, Ted Moskovitz, Felix Hill, Stephanie CY Chan, and Andrew M Saxe. What needs
to go right for an induction head? a mechanistic study of in-context learning circuits and their
formation. arXiv preprint arXiv:2404.07129, 2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023.

Shashank Sule, Richard G. Spencer, and Wojciech Czaja. Emergence of the SVD as an interpretable
factorization in deep learning for inverse problems, August 2023. URL http://arxiv.org/
abs/2301.07820.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dongdong Zhang, Xiaolei Wang, Xin Zhao, Furu
Wei, and Ji-Rong Wen. Language-specific neurons: The key to multilingual capabilities in large
language models. arXiv preprint arXiv:2402.16438, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. In The
Eleventh International Conference on Learning Representations, 2022.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2300–2344, 2022.

Zheng Xin Yong, Cristina Menghini, and Stephen Bach. Low-resource languages jailbreak gpt-4. In
Socially Responsible Language Modelling Research, 2023.

Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach Cameron, Chaowei Xiao, and Ning Zhang. Don’t
listen to me: Understanding and exploring jailbreak prompts of large language models. arXiv
preprint arXiv:2403.17336, 2024.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pages
12697–12706. PMLR, 2021.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large Language Models Are
Not Robust Multiple Choice Selectors, February 2024. URL http://arxiv.org/abs/2309.
03882.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length
generalization. In The 3rd Workshop on Mathematical Reasoning and AI at NeurIPS’23, 2023.

A The Composition Score with and without Weight Decomposition

We include some examples showing outlier components in value and query composition but not with
induction head key composition in Figure 6.

B Limitations

A limitation of our approach is that we are relying heavily on previous knowledge of the language
model that we are using (GPT2-Small), which has been extensively studied. However, the insights
that we are able to glean by building on this foundation of knowledge we view as more reason to
approach interpretability work as building directly on model-specific knowledge. Additionally, our

12

http://arxiv.org/abs/2301.07820
http://arxiv.org/abs/2301.07820
http://arxiv.org/abs/2309.03882
http://arxiv.org/abs/2309.03882

0 10 20 30 40 50 60

0

0.02

0.04

0.06

0.08

0.1

0.12

Composition Scores for 3.0 to Components of 8.10

x

y

0 10 20 30 40 50 60

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Composition Scores for 8.10 Components to 9.9 Queries

Component

C
om

po
si

tio
n

S
co

re

0 10 20 30 40 50 60

0.04

0.06

0.08

0.1

0.12

0.14

Composition Scores for 4.11 Components to 5.5 Keys

Component

C
om

po
si

tio
n

S
co

re

Values

0 10 20 30 40 50 60

0.04

0.06

0.08

0.1

0.12

0.14

Composition Scores for 4.11 Components to 5.5 Keys

Component

C
om

po
si

tio
n

S
co

re

Figure 6: Examples of composition scores of individual components with other heads. 4.11 is a
previous token head, 5.5 is an induction head, 3.0 is a duplicate token head, 8.10 is an inhibition
head, and 9.9 is a mover head. We find that there are large outlier components in value and query
composition, but not in the induction head, thus motivating our focus on those heads in the main text.

0 10 20 30 40 50 60

0

0.05

0.1

0.15

0.2

0.25

Composition Scores for 3.0 Components to 7.9.6 Values

Component

C
om

po
si

tio
n

S
co

re

−6 −4 −2 0 2 4

−6

−4

−2

0

2
Dup
Other

Projection of Duplicate and Non-Duplicate Tokens along 
3.0.1 and 3.0.2 directionsComposition Scores for 3.0 Components to 7.9.6 Values

Duplicate
Non-Duplicate

Figure 7: Left: Composition scores between each component of duplicate token head 3.0 and
inhibition component 7.9.6. Components 1 and 2 are clearly outliers. Right: on long contexts
of random tokens with inserted duplicates, we find that these directions separate duplicates from
non-duplicates quite well. This leads us to believe that these two components form a duplicate
communication channel. Our results in Section 4 support this interpretation.

findings may be able to feed back into automating interpretability of new models. Another limitation
of our approach is the inability to calculate query and key composition scores with models that
implement relative positional embeddings like RoPE [Su et al., 2023] because of the non-linearities
between the Query and Key products preventing QK to be calculated cleanly. It may be possible to
simply take the composition between the Q and K matrices individually, but we do not experiment
with that extension here.

C Duplicate Token Heads

We focus on the inhibition communication channel in the main paper and do not show the where the
duplicate token channel comes from. In Figure 7, we show that two component matrices in duplicate
token head 3.0 (3.0.1 and 3.0.2) compose strongly with inhibition heads (7.9.6 shown here). On long
sequences of random tokens, we show that these direction encode whether or not a token has been
duplicated.

D More IOI Interventions

Additional interventions testing the efficacy of inhibition heads to change behavior of a downstream
mover head are provided in Figures 8 and 9. We include the remaining inhibition heads and additional
control heads for the component scaling experiment from Section 4 in Figure 10

13

Full Model Inhibit S2 Inhibit IO Inhibit S1

−0.5

0

0.5

1 Full Model

Inhibit S2

Inhibit IO

Inhibit S1

Effect on Inhibition Score when Forcing
Inhibition on Certain Tokens

In
hi

bi
tio

n
S

co
re

Figure 8: Effect of applying the top component interventions at the same time to some token. We can
control the inhibition by selecting which token these components attend to. Higher score means more
inhibition on S2, and lower score means more inhibition on IO.

E Laundry List Data Generation

The Laundry List task is a leave-one-out task where the model must identify the object that was
not mentioned. Each input is two sentences (see Figure 1 for an example). The first sentence lists
objects that need to be purchased and the second describes the order that they are to be bought in,
with the next token prediction being the item from the first list that is to be bought last. This setup
allows us to freely shuffle the order of the information provided to the model as well as vary the
number of objects presented in each example. There are 22 objects that can be sampled, given
below: “pencil", “notebook", “pen", “cup", “plate", “jug", “mug", “puzzle",
“textbook", “leash", “necklace", “bracelet", “bottle", “ball", “envelope",
“lighter", “bowl", “apple", “pear", “banana", “orange", “steak" .

The first sentence can start a few ways, chosen randomly: ‘ Today,’, ‘ Tonight,’, ‘
Tomorrow,’, ‘’. And the second sentence start can be chosen randomly: ‘ First,’, ‘’, ‘
When I go,’, ‘ I think’

F Inhibition Mechanism in Pythia and Training Progression of Inhibition

We verify both that communication channels appear in other models, and that inhibition is a more
general mechanism that that just appearing in GPT2. To show this we analyze Pythia-160m [Biderman
et al., 2023]. Because Pythia provides training checkpoints, we are also able to analyze the formation
of the inhibition component we find to some extent.

F.1 Path Patching on IOI

We perform path patching [Wang et al., 2022, Goldowsky-Dill et al., 2023] on Pythia-160m on the
IOI task to see if the model also implements mover and inhibition heads. We find evidence for one

14

Full Model Top Components Only Zeroth Components Only

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 Full Model

Top Components Only

Zeroth Components Only

Effect on Inhibition Score when Keeping
Only One Component per Inhibition Head

In
hi

bi
tio

n
S

co
re

Figure 9: Effect on the inhibition score when removing components from the inhibition heads. If we
only take the top-1 composing heads that affect the inhibition score (circled in Figure 2) we retain
close to have of the average inhibition score (0.7 to 0.3). If we only use the component matrices
that correspond to the 0th singular value of the inhibition heads, which represents the subspace most
strongly written to by the head, the average inhibition score is only 0.04. Recall that a negative
inhibition score means placing more attention on the subject rather than IO token.

Made with Streamlit

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.3.1

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 7.9.6

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

content independent, other than the fact that what it inhibits depends on which name appears first in the

context.

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.6.2

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Inhibition Head 8.10.1

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

This is a quick test on a new dataset to see if the results generalize. I mistakenly thought my original

dataset looked like the following:

Controls

Different prompt format

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.0.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.3.0

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

These are components also from 8.6 that are possibly important in inhibition. We saw removing
component 0 led to low inhibition but component 1 never really seemed that important, but arguably it

shows some effect in the adding component experiment. This tells us that our metrics don't tell us
everything, and that multiple components in the inhibition heads are important for controlling this info.

7.3.1 was originally thought to be an inhibition head component, but it doesn't really seem to effect
mover head 9.9

Questionably Inhibition Components

John[S1] and Mary[IO] went to the
store…”
"John[IO] and Mary[S1] went to
the store…”

Output of attention head  
is overwritten to be

The attention pattern of each  
head has no effect

α ⃗v⃗v

Effect of Overwriting Attention Head Output as Scaled Component Vector () on the Inhibition Score⃗v

−200 −100 0 100 200
−1

−0.5

0

0.5

1
IO first

S1 first

Control Head 8.6.10

Singular Vector Scale

In
hi

bi
tio

n
Sc

or
e

Figure 10: We intervene on the forward pass of the model by replacing the output of some attention
head as the vector obtained by scaling a component vector by some scalar α. By doing so, the
actual attention head pattern has no effect on the downstream performance. We show the inhibition
component vectors have the unique effect of controlling the position of the name being attended to by
the downstream mover head (9.9). Random control head components do not have this effect.

15

0 20 40 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9 Vanilla
Remove Component

Remove Component from 6.6 to 9.5

Component Index

In
hi

bi
tio

n
S

co
re

Figure 11: Pythia-160m also has a single component (6.6.2) in an inhibition head that dominates the
inhibition signal.

inhibition head (6.6) in the model talking to a mover head (9.5). We find that like GPT2, the inhibition
head communicates primarily through a single component, as is shown in Figure 11.

Additionally, an induction head (4.11) strongly value composes with the inhibition component 6.6.2
as shown in Figure 12.

F.2 Training Progression of Inhibition Components

Because Pythia releases 144 intermediate checkpoints (per 1000 steps), we can track the emergence
of the inhibition head during training. We saw that the inhibition component vector clusters Name1
on one side and Name2 on the other side, representing which name is being inhibited. Everything else
ends up around the origin. Since we have minimal pairs of examples that differ only in the position
of the name that should be inhibited, we can measure the Separability of the inhibition component
vector by making sure that if one name is in one cluster, the minimal pair example is in the other
cluster. This is a measure of how well the inhibition head is structuring according to this idealized
separation of the two names.

The component that we use is the 6.6.2 matrix from the fully trained inhibition head. We test parity
by projecting the model’s activations onto this matrix.

In addition we can measure how well the fully trained component matrix activates (or removes) the
inhibition signal by adding or subtracting it from earlier checkpoints. These results are in

G Static Weight Analysis for Circuit Discovery

To show the effectiveness of the decomposition at finding heads that communicate to a significant
degree, we use the composition score only to find a large chunk of the IOI circuit from Wang et al.
[2022] encoded directly in the weights. Figure 14 shows these results. The composition score after
decomposing the inhibition head 7.9 more clearly reveals the communication between the in-circuit
heads (circled in red) than if the composition score is used without decomposition. It is possible this
approach can be built upon to find circuits in models without requiring the model to be run. We leave
this for future work.

16

0 10 20 30 40 50 60

0.04

0.06

0.08

0.1

0.12

0.14

Composition Scores for 4.11 to
Component Matrices of 6.6

Component Index

C
om

op
os

iti
on

 S
co

re

Loading [MathJax]/extensions/MathMenu.jsFigure 12: An example of an induction head (4.11) value composing strongly with the single inhibition
component 6.6.2 in Pythia-160m, suggesting a circuit for controlling attention through mover head
9.5. We leave analysis of this for future work.

H More Information on Composition

H.1 Value Composition: Duplicate Token Heads

Value composition dictates that the value vectors of an earlier head write information that affect
the values of later heads. Duplicate token heads are a well established type of attention head that
specialize in attending to duplicates in the previously seen context. That is, given the text “A B A",
the duplicate token head will attend from the second “A" token to the first. The IOI circuit finds value
composition between heads 3.0, a duplicate token head, and 7.9, an inhibition head.

H.2 Query Composition: Inhibition Heads

Value vectors of earlier heads affect the query vectors of later heads, thus changing what they attend
to. A canonical example originating in the IOI paper is with inhibition heads. These are a key part in
a token copying circuit in which the value vectors of such heads prevent later query vectors from
attending to the duplicated name in the IOI task. Mover heads (such as 9.9) We study these heads
in greater detail in Section 5. Whatever a mover head attends to will be promoted as the next token
prediction. An inhibition head tells a mover head to avoid attending to certain tokens, which is helpful
when there are multiple options to generate.

H.3 Key Composition: Induction Heads

An induction head is a pattern completing attention head. For example, seeing the pattern “A B A B
A" will cause the model to attend from the last A to the last B, since a pattern is present where B
must follow A. The mechanism that typically implements induction heads requires a previous token
head (which will always attend from the current token to the one right before it) to affect the key of a
later induction head. At a later timestep the query of the induction head will notice the signal left in

17

0 50k 100k 150k

0

0.2

0.4

0.6

0.8

1 Inhib. Comp. 6.6.2 Separability

Original Inhibition Score

Inhibition Score with Comp 6.6.2 Removed

Inhibition Score with Comp 6.6.2 Added

Inhibition Score with Comp 6.6.2 Added 3x

Inhibition Score with Comp 6.6.2 Added 10x

Training Progression of Inhibition Component Subspace and Mover Head Inhibition Score

Training Step Checkpoint

Se
pa

ra
bi

lit
y

or
 In

hi
bi

tio
n

Sc
or

e

Testing the Compression Hypothesis
Compression: the component vector is a 1D subspace that encodes a lot of the inhibition signal for the

mover head. There could be an efficiency problem where the component first uses a bunch of the

components (a multidimensional subspace) to represent this information, and as the pretraining forces
more information, it gets compressed into a 1D subspace.

Figure 13: Pythia training progression of inhibition component (6.6.2) and effect of model editing.
Adding the component matrix to the inhbition head strengthens the inhibition channel and improves
the ability to use inhibition in earlier checkpoints, subtracting it makes inhibition weaker. Separability
is simply the extent to which activations for IOI minimal pairs are split into clusters based on the
order of names (IO, S1 or S1, IO).

the earlier key, and choose to attend to it. We consider the key composition between the previous
token head 4.11 to induction head 5.5 from the IOI circuit.

I Extra Laundry List Interventions

The results for scaling individual components across Laundry List datasets (varying number of
objects) are in Figures 16, 17, 18, 19, 20, 21, 22, 23, and 24

We also include results from traversing the 3D inhibition subspace used in Figure 5 for a greater
range of settings for the number of objects in Laundry List dataset examples. We test datasets set to
have 3-10 objects and one dataset set to have 20 objects. The results are shown in Figure 15.

18

Composition Scores to 7.9 Composition Scores to 7.9.6

Composition Scores to 9.9.0Composition Scores to 9.9

Figure 14: Decomposing weight matrices cleans up the composition score enough that we can start
to read off components that belong to the IOI circuit without running the model. By starting with a
known inhibition head component (7.9.6) we can find the heads that compose into that component
and the heads for which the inhibition component composes into that belong to the IOI circuit from
Wang et al. [2022]. Left graphs show the composition score without any decomposition, which is
noisy. On the right, we find in-circuit heads (circled) qualitatively to stand out more. See Wang et al.
[2022] for more details.

19

3

Object 1

Object 2

Object 3

4

pythia path patching

Object 1

Object 2

Object 3

Object 4

5

Object 1

Object 2

Object 3

Object 4

Object 5

6

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

7

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

8

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Object 8

9

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Object 8

Object 9

10

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 8

Object 9

Object 10

20

Made with Streamlit

Object 1

Object 2

Object 3

Object 4

Object 5

Object 6

Object 7

Object 8

Object 9

Object 11

Object 12

Object 14

Object 16

Object 17

Made with Streamlit

Object 4

Object 5

Object 6

Object 7

Object 8

Object 9

Object 11

Object 12

Object 14

Object 16

Object 17

Object 18

Object 19

Object 20

Figure 15: How the 3D inhibition subspace responds to a different number of objects in laundry list
prompts. As we add objects, a new ‘slice’ of the space is allocated (not always visible) for attention
to that object until the middle set of objects is squeezed into a small neighborhood of the space. The
space is very well structured, except for two cases where artifacts form in the 8 and 10 object settings.

20

Figure 16: 2 Objects

21

Figure 17: 3 Objects

22

Figure 18: 4 Objects

23

Figure 19: 5 Objects

24

Figure 20: 6 Objects

25

Figure 21: 7 Objects

26

Figure 22: 8 Objects

27

Figure 23: 9 Objects

28

Figure 24: 10 Objects

J Compute

The models we use in this paper are small, in the range of 100M parameter tranfsormer models. The
compute required to reproduce the results is therefore relatively small, but does require access to
modern GPUs. We primarily used Nvidia 3090 GPUs for this work. Running the linear combinations
of inhibition components in Section 5 was the most expensive experiment. Each dataset took about
12 hours on either a RTX 3090 or Quadro RTX gpu.

29

	Introduction
	Background
	Identifying Communication Channels in Low-Rank Subspaces
	Composition Score
	Composition with Decomposed Component Matrices
	Model Editing
	The IOI Dataset and Inhibition Score
	Results

	Communication Channels Carry Interpretable Content-Independent Signals
	Interventions on Communication Channels

	The Inhibition Channel is Crucial in Token Indexing Tasks
	Laundry List Task
	Intervention Experiments

	Related Work
	Discussion & Conclusion
	The Composition Score with and without Weight Decomposition
	Limitations
	Duplicate Token Heads
	More IOI Interventions
	Laundry List Data Generation
	Inhibition Mechanism in Pythia and Training Progression of Inhibition
	Path Patching on IOI
	Training Progression of Inhibition Components

	Static Weight Analysis for Circuit Discovery
	More Information on Composition
	Value Composition: Duplicate Token Heads
	Query Composition: Inhibition Heads
	Key Composition: Induction Heads

	Extra Laundry List Interventions
	Compute

