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An automated COVID-19 triage pipeline using artificial
intelligence based on chest radiographs and clinical data
Chris K. Kim 1,2,14, Ji Whae Choi1,3,14, Zhicheng Jiao1,3,14, Dongcui Wang4, Jing Wu4, Thomas Y. Yi1,3, Kasey C. Halsey1,3,
Feyisope Eweje 5, Thi My Linh Tran1,3, Chang Liu4, Robin Wang5, John Sollee1,3, Celina Hsieh1,3, Ken Chang6, Fang-Xue Yang4,
Ritambhara Singh2,7, Jie-Lin Ou4, Raymond Y. Huang8, Cai Feng4, Michael D. Feldman5, Tao Liu9, Ji Sheng Gong4, Shaolei Lu4,
Carsten Eickhoff 10, Xue Feng11, Ihab Kamel12, Ronnie Sebro5, Michael K. Atalay1,3, Terrance Healey1,3, Yong Fan 5, Wei-Hua Liao4✉,
Jianxin Wang 13✉ and Harrison X. Bai 1,3,12✉

While COVID-19 diagnosis and prognosis artificial intelligence models exist, very few can be implemented for practical use given
their high risk of bias. We aimed to develop a diagnosis model that addresses notable shortcomings of prior studies, integrating it
into a fully automated triage pipeline that examines chest radiographs for the presence, severity, and progression of COVID-19
pneumonia. Scans were collected using the DICOM Image Analysis and Archive, a system that communicates with a hospital’s
image repository. The authors collected over 6,500 non-public chest X-rays comprising diverse COVID-19 severities, along with
radiology reports and RT-PCR data. The authors provisioned one internally held-out and two external test sets to assess model
generalizability and compare performance to traditional radiologist interpretation. The pipeline was evaluated on a prospective
cohort of 80 radiographs, reporting a 95% diagnostic accuracy. The study mitigates bias in AI model development and
demonstrates the value of an end-to-end COVID-19 triage platform.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19) caused by severe acute
respiratory syndrome coronavirus 2 can result in diverse
respiratory symptoms ranging from rhinorrhea to severe acute
respiratory distress syndrome1,2. As of August 3, 2021, the total
number of confirmed cases has reached over 197 million and
continues to increase globally3. The most effective way to contain
the pandemic has been the isolation of symptomatic cases with
contact tracing4, which ultimately depends on the early detection
of COVID-19 in individuals. Efficient triage and determination of
disease severity for those who are already infected have also
been essential to allocate resources and coordinate appropriate
treatment plans.
The standard diagnostic test for COVID-19 currently is the

reverse transcriptase-polymerase chain reaction (RT-PCR)5. How-
ever, its shortfalls include potential false-negative results6,7,
inconsistent diagnostic accuracy over the disease course8, and
test kit shortages9. Supplementing RT-PCR with medical imaging
can help mitigate these limitations. For example, chest radio-
graphs (CXR) can be helpful given their low-dose radiation,
relative speed, cost efficiency, portability, and accessibility
especially in places with limited resources and staff to manage
high patient volumes.
Chest radiographs have shown their efficacy in screening COVID-

19 and even in predicting the clinical outcomes of COVID-19
patients, including the deterioration of some to critical status10–12.

While the American College of Radiology does not recommend
using CXR interpretations alone to diagnose COVID-19 or assess
disease severity13, medical imaging can supplement laboratory
findings to better inform clinical decision-making. On CXRs,
COVID-19 has characteristic patterns, such as diffuse reticular-
nodular opacities, ground-glass opacities, and consolidation
especially in peripheral and lower zone distributions with bilateral
involvement14,15. These findings can inform clinicians not only
whether a patient is COVID-19 positive, but also how likely and
approximately when he or she will be admitted, mechanically
ventilated, or even expire11,16.
Prior studies have even leveraged artificial intelligence (AI) to

predict patient outcomes from CXRs17–19, acknowledging deep
learning’s automatic feature extraction and image recognition
capabilities. However, previously published studies (Supplemen-
tary Tables 1 and 2) are limited by their primary reliance on small
public datasets that expose them to considerable risk of
selection bias without any external testing to evaluate their
models’ ability to generalize on unseen data20. Additionally,
previous studies do not evaluate the tangible value of their
models, foregoing opportunities to compare their models’
performance to those of radiologists or evaluate the additive
value of their models when used in conjunction with traditional
clinical methods. Lastly, these studies have not publicly shared
the code to train and test their models, nor the model files that
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ensue from it, limiting opportunities for external collaborators to
validate and extend findings.
This study has three major contributions: (1) the design and

evaluation of a diagnosis AI model that addresses notable
shortcomings of prior publications, (2) integration with automated
image retrieval tools and prognosis AI models to develop a
streamlined triage pipeline that delivers accuracy and timeliness
of results, and (3) a comparative assessment of its performance
against radiologists, especially to discern early disease findings.
Together, the study completes a fully automated pipeline that
integrates with the hospital’s existing imaging repository to
automatically retrieve chest radiographs and examine them for
the presence and severity of COVID-19. Given the lack of COVID-19
studies that transform dynamic data feeds into actionable insights
for clinical use, a fully automated AI triage pipeline herein can help
expedite, standardize, and directly improve COVID-19 patient care.

RESULTS
Patient characteristics
A total of 12,776 CXRs acquired from 10,628 patients were used to
train and evaluate the diagnosis prediction model, including 2785
CXRs with COVID-19 pneumonia-related findings from patients
with confirmed COVID-19 by RT-PCR. COVID-19 prevalence in the
Brown-April, External, and Xiangya-February test sets, respectively,
were 70.3%, 24.4%, and 32.9%. The mean age in the training,
Brown-April, External, and Xiangya-February datasets for the
diagnosis model, respectively, was 56.0 ± 21.0, 62.7 ± 17.6, 46.9 ±
23.3, and 65.1 ± 13.9. The mean age in the training, internal
testing, and external testing datasets for the prognosis models,
respectively, was 54.8 ± 19.5, 54.2 ± 19.1, and 59.2 ± 19.0. Five
hundred and fifty out of 2309 patients among the patient cohort
used for the severity and progression models had a critical
outcome. The median age of critical patients was higher than that
of non-critical patients (67 vs. 51 years, P < 0.001). The median
number of days from CXR acquisition to a patient’s first critical
event was 0.63 days with an interquartile range of 2.61 days.
Variance across training and testing datasets are reported for the

diagnosis and prognosis models, respectively, in Tables 1 and 2.
Excluding sex distribution of COVID-19 positive patients within the
Xiangya-February test set, the calculated P-values for the diagnosis
model indicate the statistically significant variance of patient
demographics across the training and external testing datasets
(Table 1). Likewise, the reported P-values for the prognosis models
indicate that the demographic variance across their test datasets
is statistically significant. Additionally, among the 14 assessed
pathological and comorbidity variables for the prognosis models,
five demonstrated statistically significant variance between the

internal and external test datasets. These clinical variables include
oxygen saturation on room air (P < 0.001), white blood cell count
(P= 0.007), lymphocyte count (P < 0.001), c-reactive protein (P <
0.001), and cardiovascular disease (P= 0.020).

Model and overall pipeline performance
The diagnosis model achieved an area under the receiver
operating characteristic curve (AUROC) of 0.925 internally
(Brown-April) and 0.839 and 0.798 externally (External and
Xiangya-February) (Fig. 1). On Brown-April, the model was more
accurate (accuracy: 77.0% vs. 52.4%; 95% CI: 18.7%, 30.5%; P <
0.001), sensitive (sensitivity: 68.3% vs. 38.3%; 95% CI: 22.2%, 37.8%;
P < 0.001), specific (specificity: 96.6% vs. 84.3%; 95% CI: 5.8%,
19.7%; P= 0.020), and balanced (F1-score: 80.5% vs. 52.3%, 95%
CI: 21.2%, 35.4%; P < 0.001) than the average radiologist from the
study (Fig. 1). The average radiologist was defined by deriving the
mean value for the accuracies, sensitivities, specificities, and
F1-scores for each of the seven radiologists. Brown-April consisted
of 38 CXRs that were marked normal by the original radiology
reports despite those patients testing positive via RT-PCR. While
this study’s radiologists, respectively, could only label 1 (2.6%), 0,
0, 2 (5.3%), 0, 0, and 1 scans correctly as COVID-19 positive, the
model correctly labeled 17 (44.7%) of these scans. Gradient-
weighted class activation mapping (Grad-CAM) illustrated that the
model recognized lung lesions (Fig. 2), attributing greater input to
them when deriving predictions21.
The combined severity models reported AUROCs of 0.860 (95%

CI: 0.851, 0.866) internally and 0.799 (95% CI: 0.788, 0.810)
externally, while the combined progression models reported
C-indices of 0.791 (95% CI: 0.786, 0.803) internally and 0.766 (95%
CI: 0.753, 0.774) externally. Individually, the image- and clinical-
based severity models, respectively, reported AUROCs of 0.814
(95% CI: 0.804, 0.826; P < 0.001) and 0.846 (95% CI: 0.837, 0.860; P=
0.005) internally and 0.759 (95% CI: 0.746, 0.771; P < 0.001) and

Table 1. Demographic variance across diagnosis model test datasets.

Training vs.
Brown-April

Training vs.
External

Training vs.
Xiangya-February

Positive PCR Only

Sex 0.499 <0.001 0.343

Age 0.079 0.010 <0.001

Negative PCR Only

Sex <0.001 <0.001 <0.001

Age <0.001 <0.001 <0.001

All patients

Sex <0.001 <0.001 <0.001

Age <0.001 <0.001 <0.001

P-values were calculated using ANOVA and two-sample t-tests between the
training dataset and each testing sample set.

Table 2. Demographic and clinical variance across prognosis model
test datasets.

Training vs.
External test

Internal test vs.
External test

Demographic data

Sex <0.001 <0.001

Age <0.001 <0.001

Clinical data

Temperature 0.317 0.392

O2 Saturation on room air <0.001 <0.001

White blood cell count <0.001 0.007

Lymphocyte count <0.001 <0.001

Creatinine 0.095 0.511

C-Reactive protein <0.001 <0.001

Cardiovascular disease 0.029 0.020

Hypertension 0.043 0.059

COPD 0.330 0.732

Diabetes 0.233 0.676

Chronic liver disease 0.524 0.770

Chronic kidney disease 0.014 0.703

Cancer 0.322 0.689

Human
Immunodeficiency Virus

0.946 0.850

P-values were calculated using ANOVA and two-sample t-tests between the
training dataset and each testing sample set, with values >0.05 marked
in bold.
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0.785 (95% CI: 0.779, 0.799; P= 0.005) externally. Meanwhile, the
individual image- and clinical-based prognosis models, respec-
tively, reported C-indices of 0.760 (95% CI: 0.746, 0.772; P < 0.001)
and 0.739 (95% CI: 0.721, 0.748; P < 0.001) internally and 0.712 (95%
CI: 0.700, 0.719; P < 0.001) and 0.718 (95% CI: 0.707, 0.726; P < 0.001)
externally. As such, leveraging a combination of the image- and
clinical-based methods improved model performance.
A total of 820 CXRs collected between October 2020 and

November 2020 were processed in real-time using the AI pipeline.
The mean latencies for the pipeline and the radiologists,

respectively, were 14.3 ± 9.8 and 24.5 ± 28.1 min. Among these
studies, 80 CXRs (hereafter referred to as Brown-Autumn) had RT-
PCR data acquired within 24 h, 3 (3.8%) of which were COVID-19
positive. The diagnosis model was able to accurately predict 76
(95.0%) of these CXRs for COVID-19 in real-time.

DISCUSSION
Prompt diagnosis and prognostication of COVID-19 patients can
be helpful in containing the pandemic. As hospitals are inundated

Fig. 1 COVID-19 diagnosis AUROC curves for the internally held-out and external test sets. The true and false positive rates for the study’s
radiologists are also portrayed to assess model performance relative to traditional clinical methods. a Internally held-out test set and b
external test set. TPR true positive rate, FPR false positive rate.

Fig. 2 COVID-19 diagnosis model gradient-weighted class activation mapping (Grad-CAM) visualization. All images were predicted
correctly as COVID-19 positive. Grad-CAM heatmaps visualize which portions of the input chest radiograph were important for the
classification decision. a Brown-April, original chest radiographs, b External, original chest radiographs, c Xiangya-February, original chest
radiographs, d Brown-April, Grad-CAM overlay, e External, Grad-CAM overlay, and f Xiangya-February, Grad-CAM overlay.
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with COVID-19 patients due to the propagation of new variants,
relief of mask and social distancing mandates, and the lack of
widespread vaccine adherence, an AI pipeline to effectively triage
ED patients can help clinicians better manage limited resources,
prepare for adverse events, and maintain a safe environment for
staff and other patients. Using AI based on CXRs and clinical data,
this study provides an end-to-end solution for COVID-19 diagnosis
and prognostication that integrates seamlessly with a hospital’s
existing network for immediate clinical use. The pipeline functions
as an additional tool that supplements conventional examination
methods to triage patients and develop appropriate care plans.
Earlier reviews have published predictive models for COVID-19

diagnosis and prognosis, but many of these studies present
numerous sources of potential bias that the proposed study
addresses20 (Supplementary Discussion). Supplementary Table 1
illustrates a comparative analysis of the current study against
previously published COVID-19 diagnostic studies. While the
present study seeks to maximize the gains associated with each
individual pipeline component, the primary objective was to
optimize study design based on notable pitfalls of these previous
studies, integrate standalone technologies, and provide a more
comprehensive COVID-19 assessment. The goal was not to
develop a custom-built convolutional neural network (CNN)
architecture for COVID-19 diagnosis and prognosis, hence the
models’ usage of EfficientNet, a popular CNN architecture and
scaling method well-regarded for its high accuracy and low
computational cost22. As such, the innovation driven by the
present study is not the novelty of algorithms used, but rather by
the significant strides taken to enhance the practical utility and
clinical adoption of AI-assisted diagnosis and prognosis.
Foremost, most prior studies exclusively utilized public datasets,

most notably the COVID-19 Image Data Collection23, without
validating their models on an external test set. Not only is it often
impossible, with public repositories, to confirm that patients are
indeed positive for COVID-19 without accompanying RT-PCR
results, patient charts, or radiological reports, many of these
datasets, including images from the COVID-19 Image Data
Collection, have image artifacts that can engender misleading
results20. In fact, it has been demonstrated that models can learn to
“diagnose” COVID-19 with an AUROC of 0.68 from images with lung
regions entirely excluded solely from other non-clinical artifacts
specific to the institutional source24. Many images from public
repositories, additionally, are delivered compressed rather than in
their original Digital Imaging and Communications in Medicine
(DICOM) format. Loss of resolution that is not uniform across
classes can lead to model overfitting20. While some studies attempt
to mitigate bias by segmenting the lung field or visualizing class
activation maps, the ability of their models to generalize on unseen
data is still conjecture. Prior studies, by neglecting to evaluate their
models on an external independent test set, are unable to
demonstrate that their models are truly diagnosing for COVID-19,
rather than simply identifying the source of the CXR.
Additionally, images that have been extracted from publications

and uploaded online are likely to represent more unusual or severe
cases of COVID-19. Such overrepresentation can limit a model’s
ability to discern preliminary disease findings, reducing the model’s
value as a diagnostic tool to detect COVID-19 at an early stage20.
While the current study leverages public datasets, the authors have
also collected a considerably large collection of COVID-19 and non-
COVID-19 images of diverse severity and origin, enacting various
protocols to ensure that the acquired COVID-19 scans present
COVID-19-related pneumonia and are accompanied by timely RT-
PCR tests. In fact, the diagnosis model was trained on ~12,000
CXRs, 2360 scans (20.4%) of which manifested COVID-19 pneumo-
nia findings. The remaining scans encompassed diverse thoracic
findings, including non-COVID-19 pneumonia, cardiomegaly, lung
lesion, lung opacity, edema, consolidation, atelectasis, pneu-
mothorax, and pleural effusion. Without these protocols and by

exclusively using public datasets that are limited by their extreme
class imbalance, lack of disease severity coverage, and small
sample size, prior studies likely have overfitted their models,
reporting overly optimistic model performance20.
Moreover, previous studies have treated diagnosis and prog-

nosis as isolated problems and have outlined few details on how
they can be integrated into an actual clinical workflow. A
diagnosis or prognosis model, by itself, lacks the viability to be
incorporated for practical use not only because it is only one
component of an ecosystem of factors that motivate clinical
decision-making, but also because so much human intervention is
necessary to utilize them effectively. In fact, traditional methods to
access images from the Picturing Archiving and Communication
System (PACS) require repetitive, manual querying of the
electronic health records, making real-time communication
between advanced analytic systems infeasible. To address these
gaps, this study utilizes DICOM Image Analysis and Archive
(DIANA) to retrieve requested medical images in real-time and
pass them as inputs for AI analysis25. DIANA uses Docker
containerization to easily deploy AI solutions without customized
development and acts as a data retrieval engine from the image
database. As an end-to-end solution, inputting patient accession
numbers would trigger a series of AI models to predict which
cases will lead to future COVID-19 complications and hospitaliza-
tion. Unlike previously published studies (Supplementary Table 2),
the prognosis model not only predicts the disease severity of a
COVID-19 patient, but also predicts the time until a patient
encounters his or her first critical event. By streamlining triage to
monitor patient entry into designated COVID-19 safe zones or
determine which patients will require standard or intensive care,
the study informs hospital personnel with tangible timelines and
recommendations to better allocate limited resources and
improve patient outcomes. An illustrative workflow is outlined in
Fig. 3 to demonstrate how the pipeline can handle different
permutations of patient symptoms, CXR presentations, and
disease severities.

Fig. 3 COVID-19 triage pipeline. The blue arrows represent an
illustrative example of how a patient presenting with severe COVID-
19 and high risk for critical deterioration would be triaged via the
automated pipeline. Recommended patient outcomes would
require physician approval before execution.
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In addition, the present pipeline can handle a realistic influx of
patients into any emergency department (ED). The diagnostic
model, for instance, reported a 95% accuracy on Brown-Autumn, a
series of CXRs that were collected in real-time from the ED, and
was tested on two external test sets to assess its ability to
generalize on unseen data. While some performance loss was
noted between the internal and external test sets (diagnosis
AUROC: 0.925 versus 0.839 and 0.798; severity AUROC: 0.860
versus 0.799; prognosis concordance index [C-index]: 0.791 versus
0.766), imperfect generalization is expected given patient
populations that are inevitably unrepresented and the incon-
sistent image acquisition conditions across institutions, including
variability of equipment, techniques, and operators. In fact,
analysis of variance (ANOVA) and two-sample t-tests attest to
statistically significant demographic variance between the training
and external tests for both the diagnosis and prognosis models.
Despite these differences, the system continues to accurately
predict COVID-19 diagnosis, severity, and time-to-event progres-
sion, supporting the model’s ability to generalize on unseen
populations and new institutions. This represents a stark contrast
to previous studies that evaluate their models solely on internal
test sets, whose patient demographic distribution likely resembles
that of their training dataset as seen with Brown-April in Table 1.
This evaluation encourages model overfitting, likely contributing
to overly optimistic model performance and the lack of practical
utility as the model cannot be adopted for widespread clinical use.
As such, the exposure to a wide gamut of CXR presentations

likely enhanced the robustness of this study’s prediction
models to continue operating effectively on different hospital
networks without customizing the model design or significantly
re-tuning model parameters for each institution. Image
preprocessing techniques to standardize CXRs and mitigate

data harmonization concerns enable the platform to be a fully
scalable solution that can be deployed within a reasonable
timeframe for most hospital institutions. Foregoing this process
not only lengthens implementation timelines but also limits
model accessibility to large multi-institution networks as
smaller hospitals may not have the technical infrastructure or
sufficient influx of patients to provide a meaningful sample of
radiographs for hypothetical model re-tuning.
Finally, the study illustrates the impressive pattern recognition

ability of deep learning methods. The diagnosis model out-
performed human evaluators in its ability to detect COVID-19 from
CXRs with statistical significance (P < 0.05). Furthermore, the
model correctly flagged 17 of 38 (44.7%) CXRs that were originally
marked as normal by the original radiologist, despite having been
acquired from patients with confirmed COVID-19 via RT-PCR. In
contrast, most radiologists from this study were likewise unable to
detect indications of COVID-19 from these scans. This outcome
adds to the increasing evidence that nascent COVID-19 findings
can be difficult to discern. Especially as misdiagnosis can stem a
series of misinformed decisions as care plans often commence
with a diagnosis, the proposed pipeline can contribute immense
value as an auxiliary tool to supplement conventional examina-
tion. Figure 4 summarizes the key features and value proposition
of each component.
This study has several limitations that warrant further

investigation. First, the present study utilized a training set of
chest scans acquired only from the ED. The current inclusion
and exclusion criteria thus introduce some selection bias, as
they do not consider patients from outpatient services or those
who encountered a critical event from a subsequent admission
after being discharged. Among these scans, the CXRs from
patients with confirmed COVID-19 used to train the diagnosis

Fig. 4 Features and value propositions of individual pipeline components. The outlined components work together to deliver an end-to-
end pipeline to rapidly identify and triage COVID-19 patients within an emergency department. Tangible value propositions are outlined for
each component.
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model regarding the positive class were largely from one
institution. While class activation mapping was employed to
verify that the model was not learning medically irrelevant
differences between data subsets, the training dataset can be
further improved by including more COVID-19 negative CXRs
from this hospital network and by expanding the diversity of
CXR sources for the positive class. Additionally, RT-PCR results
were used as ground-truth labels for the diagnosis model,
despite their limited sensitivity, given the expansive size of the
training set. A future study that monitors patients presenting to
the ED with respiratory or flu-like symptoms and evaluates the
pipeline against several RT-PCR results throughout the patient’s
participation could mitigate this limitation and assess the
model’s true accuracy. Last, further investigation is necessary to
confirm the interpretability of the pipeline’s outputs in an
actual clinical setting and quantitatively measure its incre-
mental value in improving patient outcomes. The study at hand
is primarily a technological proof of concept that optimizes and
integrates standalone technologies to lay the foundation for
future studies, including those that enhance the model’s
interpretability for non-technical users within the healthcare
community. While AI-assisted diagnostics and prognosis may
enhance efficiency and accuracy, further development to
increase its ease-of-use, such as an intuitive low-code/no-code
front-end and auto-generated descriptions to explain AI output,
is necessary to augment the model’s acceptance and adoption
across a wide assortment of clinical staff.
The study addresses one of the key issues in AI research—its

practical implementation for clinical use. By addressing major
shortcomings of prior publications and developing a fully
automated pipeline to retrieve chest radiographs and examine
them for the presence and severity of COVID-19 pneumonia,
the authors provide a framework that leverages deep learning
solutions to expedite triage and inform clinical decision-
making with data-driven insights. This AI pipeline is designed
to be utilized as an additional tool to supplement and enhance
conventional examination for COVID-19 triage, rather than
replacing it altogether. Upon any CXR acquisition, the system
would retrieve the relevant image, patient, and clinical data via
DIANA and feed the appropriate inputs into the respective AI
models for diagnosis and prognosis. As illustrated in Fig. 3,
each component helps the integrated pipeline triage a patient
into three likely outcomes, depending on the presence and
severity of COVID-19 pneumonia. The results can be employed
as an initial screening tool within the emergency department
to flag patients requiring immediate attention or imminent life-
supporting resources, such as respiratory ventilators. A system
that can quickly deliver preliminary findings of the status and
anticipated care a patient will require can help clinicians
prepare for and address complications earlier. The results can
also be used as a confirmatory second opinion to validate
initial radiological findings via traditional examination or to
identify abnormal lung regions that may have been difficult to
discern without AI assistance. As such, the tool is designed to
be used alongside traditional methods for patients presenting
to the emergency room with respiratory symptoms and
requiring a CXR. Specific timelines will likely vary, but the
inherent nature of an integrated pipeline to be fully automated
allows hospitals to determine when and how the tool will be
used, whether that be for emergency screening, confirmatory
assessments, or fail-safe checks. The present study, therefore,
validates the feasibility and value of having an end-to-end AI
platform that expedites and enhances traditional examination
methods.

METHODS
Data collection and cleaning
A collection of 7775 CXRs were retrieved from the ED of four hospitals
affiliated with the University of Pennsylvania Health System (Penn) in
Philadelphia, Pennsylvania, and four hospitals affiliated with Brown
University (Brown) in Providence, Rhode Island. Among this cohort,
3412 CXRs were acquired between February 2020 and July 2020 from
patients with confirmed COVID-19 via RT-PCR (COVID-19 RT-PCR test
from Laboratory Corporation of America). As some RT-PCR results were
dated more than 24 h apart from the CXR acquisition, the radiology
report was used to determine if each CXR from patients with confirmed
COVID-19 via RT-PCR manifested pneumonia. Only the 2018
pneumonia-presenting CXRs, 1774 of which were acquired within a
day of RT-PCR administration, were utilized for the positive class to train
the diagnosis model. Asymptomatic cases were excluded to permit
model convergence for COVID-19 positive detection from CXRs.
Pneumonia CXRs dating before December 2019 were used to train for
the negative class so that the model could discern between pneumonia
of COVID-19 and other viral/bacterial etiologies. The distribution of
COVID-19 and non-COVID-19 cases, as well as certain exclusion criteria,
of the internally held-out and two independent external test sets for the
diagnosis model, are illustrated in the fourth step, “Brown-April
preparation” and “Independent test set preparation,” of Fig. 5. The
prognosis models for severity classification and time-to-event predic-
tion were trained using a 7:1:2 train-validation-split on the CXRs from
the 2011 Penn patients. Chest radiograph images from Brown patients
were not utilized to train the prognosis models.
The remaining 4363 CXRs the authors collected were acquired between

January 2018 and December 2019 and were from uninfected patients. This
COVID-19 negative subset consisted of 3301 RADCAT 1, or normal, and
1062 RADCAT 3 and 4, or urgent and priority, scans26. RADCAT is a
structured reporting system, through which radiologists can assign
medical images a score ranging from 1 (normal) to 5 (critical) to categorize
and communicate findings more easily. The entire dataset was supple-
mented with 518 CXRs, of which 342 scans presented COVID-19 findings,
from the COVID-19 Image Data Collection23 and 4700 non-COVID-19 CXRs
from CheXpert27, a library of CXRs acquired before July 2017 from Stanford
Hospital. All scans were either in the posterior-anterior or anterior-posterior
view. The methodology behind training dataset construction for the
diagnosis model is illustrated in the first step, “Training data collection and
cleaning,” of Fig. 5.
The Brown cohort of ~5000 scans was automatically retrieved from the

hospitals’ PACS using DIANA. This system uses open-source software, such
as the Docker container system and the Orthanc lightweight DICOM server,
to deploy replicable image retrieval scripts on an institutional machine. At
a high level, DIANA uses containerized Orthanc instances to communicate
with PACS and programmatically retrieve anonymized images. Images are
processed on an AI container and presented to end-users on a
communications platform of choice25.
Brown CXRs from April 2020 was held out as an internal test set

(Brown-April) for the diagnosis model. Brown-April consisted of
287 scans, 199 of which were from patients with confirmed COVID-19
via RT-PCR and exhibiting respiratory symptoms. Brown-April CXRs were
independently evaluated for the presentation of COVID-19 pneumonia
by seven radiologists, respectively, with 15, 3, 1, 5, 3, 6, and 2 years of
experience examining CXRs. While the patient age and sex were
provided, image properties were removed by preprocessing, shuffling,
renaming, and resizing scans.
Two datasets (Xiangya-February and External) were used for external

testing of the diagnosis model. Xiangya-February consisted of 200 scans
from the Xiangya Hospital of Central South University in Changsha,
China, 72 scans of which were collected from 79 patients with
confirmed COVID-19 via RT-PCR and exhibiting respiratory symptoms.
External was compiled from public repositories, including the Valencian
Region Medical ImageBank COVID-19+ dataset28, the National Institute of
Health29, and the Shenzhen Hospital CXR dataset30. This compilation
consisted of 200 scans with COVID-19 pneumonia-related lesions, 300 scans
with non-COVID-19 findings, and 300 scans without findings. All scans
were collected within 24 h of RT-PCR acquisition. The methodologies to
construct the external test sets for the diagnosis model, as well as their
proportions of COVID-19 images, are outlined in the fourth step, “Brown-
April preparation” and “Independent test set preparation,” of Fig. 5. CXR
scans from 546 Brown patients were compiled to assemble an external test
set for the prognosis models.
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The retrospective study was conducted in accordance with the
Declaration of Helsinki and was approved by the Institutional Review
Boards of all participating hospital institutions. Image data were
deidentified, and personal health information was anonymized. External
study sponsors were not involved in the study design; collection, analysis,
and interpretation of data; writing of the report; nor the decision to
submit the paper for publication. All authors had full access to the data in
the study and accepted responsibility for the content herein to submit
for publication.

Predictive AI model development
All images were downloaded at their original dimensions and resolution.
Images downloaded in DICOM format were inverted, if necessary, and
saved as PNG files. All images were padded, uniformly resized, and
converted into 3-channel data. The images were rescaled and normalized
using the channel-wise ImageNet means and standard deviations31.
Preprocessing the images helped address data harmonization concerns
across multiple datasets, standardizing the images to provide a compar-
able view of data across sources.
Diagnosis models were developed using EfficientNet-B0 models

initialized on ImageNet pretrained weights31 and trained using 5-fold
cross-validation without patient overlap between folds (Fig. 5). Models
were trained using the Adam optimizer32, sigmoid activation, and
weighted binary cross-entropy loss to update their weights. Models
with the lowest validation losses were selected to minimize overfitting.
Figure 5 delineates the methodology to train, validate, and test the
diagnosis model. The subsequent severity and progression prediction
models employed a likewise workflow, navigating training data
collection and cleaning, image processing, model training with cross-
validation, external test set preparation, model testing, and model
analysis19.
Severity models were developed to predict from the segmented CXR

images and clinical data whether a patient would encounter a critical
event19. Lung regions were automatically segmented using a U-Net
model33 that employed a pretrained VGG-11 feature extractor. An
EfficientNet-B0 model initialized on ImageNet pretrained weights31 was
used to extract features from the masked scan. The output was passed
to four prediction layers—one convolutional layer (256) with global
average pooling followed by three dense layers (256, 32, 2). An adjunct
model comprising three dense layers (16, 32, 2) used 16 demographic,

pathology, and comorbidity variables to also predict disease severity.
The weighted sum between the image-based and clinical-based
predictions was used to inform whether the disease severity was
critical.
Time-to-event progression models were developed to predict a

COVID-19 patient’s risk of deterioration to their first critical outcome19.
The CXR features from one of the severity model’s dense layers (256) and
the 16 clinical variables were passed as respective inputs to the image-
based and clinical-based survival forest models. The weighted sum of
the image-based and clinical-based predictions assessed how likely, and
approximately when, a patient would deteriorate to his or her first
critical outcome.

Statistical analysis and pipeline evaluation
Variance across training and testing datasets was measured using ANOVA
for binary variables and two-sample t tests for continuous variables. A P-
value smaller than 0.05 was interpreted as the means across samples
being significantly different. The diagnosis prediction model was
evaluated (Fig. 5) by its AUROC against the RT-PCR results on the internal
and external test sets. The algorithm’s performance was compared to
those of seven board-certified radiologists. P-values and 95% confidence
intervals were obtained for the interrater differences using the bootstrap
method34. The 95% confidence intervals of AUROC were determined for
the severity model using the adjusted Wald method35. The C-index for
right-censored data was calculated to evaluate the performance of the
progression prediction models36.
The pipeline was integrated within Rhode Island Hospital’s network

and electronic health record system to evaluate queued CXRs from the
ED in real-time. The accuracy of the system was noted, and the latency
of the platform was compared to that of the radiologists. The latency of
the latter group was defined as the time between CXR acquisition and
report creation.

Ethics disclaimers
The retrospective study was conducted in accordance with the
Declaration of Helsinki and was approved by the Institutional Review
Boards of all participating hospital institutions. Image data were
deidentified, and personal health information was anonymized. External
study sponsors were not involved in the study design; collection,

Fig. 5 COVID-19 diagnosis prediction model development. The flowchart delineates the inclusion and exclusion criteria for the training and
testing cohorts, as well as the methods to train, test, and evaluate the model.

C.K. Kim et al.

7

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)     5 



analysis, and interpretation of data; writing of the report; nor the decision
to submit the paper for publication. All authors had full access to the
data in the study and accepted responsibility for the content herein to
submit for publication.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The chest radiographs the authors collected and used for this study are not available
for public access due to data privacy and patient confidentiality clauses governed by
HIPPA regulations. Limited data access is obtainable upon reasonable request by
contacting the corresponding author.

CODE AVAILABILITY
Model files and code for the AI prediction models within the triage pipeline are
available in the following repositories: https://github.com/chrishki/COVID19CXR and
https://github.com/ZhichengJiao/COVID-19-prognostic-model.

Received: 25 May 2021; Accepted: 28 November 2021;

REFERENCES
1. Bhatraju, P. K. et al. Covid-19 in Critically ill patients In the Seattle region—case

series. N. Engl. J. Med. 382, 2012–2022 (2020).
2. Guan, W. et al. Clinical characteristics of coronavirus disease 2019 in China. N.

Engl. J. Med. 382, 1708–1720 (2020).
3. COVID-19 Map. Johns Hopkins Coronavirus Resource Center. https://coronavirus.

jhu.edu/map.html.
4. Kucharski, A. J. et al. Effectiveness of isolation, testing, contact tracing, and

physical distancing on reducing transmission of SARS-CoV-2 in different
settings: a mathematical modelling study. Lancet Infect. Dis. 20, 1151–1160
(2020).

5. Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time
RT-PCR. Eurosurveillance 25, 23–30 (2020).

6. Chen, Z. et al. A patient with COVID-19 presenting a false-negative reverse
transcriptase polymerase chain reaction result. Korean J. Radiol. 21, 623–624
(2020).

7. Winichakoon, P. et al. Negative nasopharyngeal and oropharyngeal swabs do not
rule out COVID-19. J. Clin. Microbiol. 58, e00297–20 (2020).

8. Sethuraman, N., Jeremiah, S. S. & Ryo, A. Interpreting diagnostic tests for SARS-
CoV-2. JAMA 323, 2249–2251 (2020).

9. ASM Advocacy. ASM Expresses Concern About Coronavirus Test Reagent Shortages
https://asm.org/Articles/Policy/2020/March/ASM-Expresses-Concern-about-Test-
Reagent-Shortages (2020).

10. Ozturk, T. et al. Automated detection of COVID-19 cases using deep neural
networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020).

11. Toussie, D. et al. Clinical and chest radiography features determine patient out-
comes in young and middle-aged adults with COVID-19. Radiology 297,
E197–E206 (2020).

12. Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N. & Costa, Y. M. G. COVID-19
identification in chest X-ray images on flat and hierarchical classification sce-
narios. Comput. Methods Prog. Biomed. 194, 105532 (2020).

13. American College of Radiology. ACR Recommendations for the use of Chest
Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/
Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-
Infection.

14. Jacobi, A., Chung, M., Bernheim, A. & Eber, C. Portable chest X-ray in coronavirus
disease-19 (COVID-19): a pictorial review. Clin. Imaging 64, 35 (2020).

15. Wong, H. Y. F. et al. Frequency and distribution of chest radiographic findings in
patients positive for COVID-19. Radiology 296, E72–E78 https://doi.org/10.1148/
radiol.2020201160 (2020).

16. Kim, H. W. et al. The role of initial chest X-ray in triaging patients with suspected
COVID-19 during the pandemic. Emerg. Radiol. 27, 1 (2020).

17. Zargari Khuzani, A., Heidari, M. & Shariati, S. A. COVID-Classifier: an automated
machine learning model to assist in the diagnosis of COVID-19 infection in chest

X-ray images. Sci. Rep. 11, 9887, https://doi.org/10.1038/s41598-021-88807-2
(2021).

18. Li, M. D. et al. Automated assessment and tracking of COVID-19 pulmonary
disease severity on chest radiographs using convolutional Siamese. Neural Netw.
2, e200079 (2020).

19. Jiao, Z. et al. Prognostication of patients with COVID-19 using artificial intelli-
gence based on chest x-rays and clinical data: a retrospective study. Lancet Digit.
Health 3, e286–e294 (2021).

20. Roberts, M. et al. Common pitfalls and recommendations for using machine
learning to detect and prognosticate for COVID-19 using chest radiographs and
CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

21. Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vis. 128, 336–359 (2016).

22. Tan, M. & Le, Q. V. EfficientNet: rethinking model scaling for convolutional neural
networks. 36th Int. Conf. Mach. Learn. ICML 2019 2019, 10691–10700 (2019).

23. Cohen, J. P. et al. COVID-19 Image data collection: prospective predictions are the
future. undefined 2020, 2–3 (2020).

24. Maguolo, G. & Nanni, L. A critic evaluation of methods for COVID-19 automatic
detection from X-ray images. Inf. Fusion 76, 1–7 (2020).

25. Yi, T. et al. DICOM image analysis and archive (DIANA): an open-source system for
clinical AI applications. J. Digit. Imaging. 34, 1405–1413, https://doi.org/10.1007/
s10278-021-00488-5 (2021).

26. Tung, E. L., Dubble, E. H., Jindal, G., Movson, J. S. & Swenson, D. W. Survey of
radiologists and emergency department providers after implementation of a
global radiology report categorization system. Emerg. Radiol. 28, 65–75
(2021).

27. Irvin, J. et al. CheXpert: a large chest radiograph dataset with uncertainty labels
and expert comparison. In 33rd AAAI Conference on Artificial Intelligence AAAI
2019, 31st Innovations in Applied Artificial Intelligence Conference IAAI 2019 9th
AAAI Symp. Educ. Adv. Artificial Intelligence EAAI 2019 590–597 (AAAI, 2019).

28. Vayá, M. et al. BIMCV COVID-19+: A Large Annotated Dataset of RX and CT Images
from COVID-19 Patients (2020). arXiv:2006.01174.

29. Wang, X. et al. Chest X-ray 8: hospital-scale chest X-ray database and benchmarks
on weakly-supervised classification and localization of common thorax diseases.
In Proc. of the 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017 January. 3462–3471 (IEEE, 2017).

30. Jaeger, S. et al. Two public chest X-ray datasets for computer-aided screening of
pulmonary diseases. Quant. Imaging Med. Surg. 4, 475 (2014).

31. Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211–252 (2014).

32. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. 3rd
International Conference on Learning Representations, ICLR 2015—Conference
Track Proc. (ICLR, 2015).

33. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for bio-
medical image segmentation. Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinforma.) 9351, 234–241 (2015).

34. Efron, B. Bootstrap methods: another look at the Jackknife. Ann. Stat. 7, 1–26
(1979).

35. Agresti, A. & Coull, B. A. Approximate Is better than ‘exact’ for interval estimation
of binomial proportions. Am. Stat. 52, 119 (1998).

36. Harrel, F. E. Jr, Lee, K. L. & Mark, D. B. Multivariable prognostic models: issues in
developing models, evaluating assumptions and adequacy, and measuring and
reducing errors. Stat. Med. 28, 361–387 (1996).

ACKNOWLEDGEMENTS
This work was supported by the Brown University COVID-19 seed grant to H.X.B. and
R.S., the Amazon Web Services for the Diagnostic Development Initiative to H.X.B.,
and the National Cancer Institute [F30CA239407, K.C.].

AUTHOR CONTRIBUTIONS
C.K.K., J.W.C., and Z.J. have contributed equally and are co-first authors for this
publication. C.K.K., J.C., Z.J., W.L., Y.F., and H.X.B. were responsible for study
conceptualization. C.K.K., J.W.C., Z.J., T.Y.Y., R.W., and H.X.B. were responsible for
deriving methodology and study design. C.K.K., Z.J., T.Y.Y., and R.W. were
responsible for software development and implementation of computer
algorithms. C.K.K., D.W., J.W., T.Y.Y., and H.X.B. were responsible for the verification
and validation of research outputs. C.K.K., Z.J., T.Y.Y., and R.W. were responsible for
the formal analysis of study data. C.K.K., J.C., Z.J., D.W., T.Y.Y., R.W., J.S., C.H., and S.
L. were responsible for conducting the research and investigation process,
including data collection. H.X.B. was responsible for the provision of study
materials and computing resources. C.K.K., J.W.C., D.W., J.W., K.C.H., F.E., T.T., L.C., J.
S., C.H., F.-X.Y., J.O., C.F., J.G., and H.X.B. were responsible for data annotation and

C.K. Kim et al.

8

npj Digital Medicine (2022)     5 Published in partnership with Seoul National University Bundang Hospital

https://github.com/chrishki/COVID19CXR/
https://github.com/ZhichengJiao/COVID-19-prognostic-model
https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
https://asm.org/Articles/Policy/2020/March/ASM-Expresses-Concern-about-Test-Reagent-Shortages
https://asm.org/Articles/Policy/2020/March/ASM-Expresses-Concern-about-Test-Reagent-Shortages
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://doi.org/10.1148/radiol.2020201160
https://doi.org/10.1148/radiol.2020201160
https://doi.org/10.1038/s41598-021-88807-2
https://doi.org/10.1007/s10278-021-00488-5
https://doi.org/10.1007/s10278-021-00488-5


curation. C.K.K., J.W.C., and Z.J. were responsible for the preparation of the initial
draft. C.K.K., J.W.C., Z.J., K.C., J.S., I.K., R.S., Y.F., W.L., J.W., and H.X.B. were
responsible for critical review and commentary. C.K.K. was responsible for the
preparation and creation of data visualization. W.L., Y.F., and H.X.B. were
responsible for oversight of research activity planning and execution. J.W.C., J.
W., and H.X.B. were responsible for the management and coordination of research
activity execution. K.C., R.S., and H.X.B. were responsible for the acquisition of
financial support for the project leading to this publication.

COMPETING INTERESTS
One of the co-authors (X.F.) is employed by Carina Medical. The remaining authors
declare no competing interests or other disclosures to make.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-021-00546-w.

Correspondence and requests for materials should be addressed to Wei-Hua Liao,
Jianxin Wang or Harrison X. Bai.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

C.K. Kim et al.

9

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)     5 

https://doi.org/10.1038/s41746-021-00546-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	An automated COVID-19 triage pipeline using artificial intelligence based on chest radiographs and clinical data
	Introduction
	Results
	Patient characteristics
	Model and overall pipeline performance

	Discussion
	Methods
	Data collection and cleaning
	Predictive AI model development
	Statistical analysis and pipeline evaluation
	Ethics disclaimers
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




