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Abstract

Pretrained general-purpose language models can achieve state-of-the-art accuracies in various nat-
ural language processing domains by adapting to downstream tasks via zero-shot, few-shot and fine-
tuning techniques. Because of their success, the size of these models has increased rapidly, requiring
high-performance hardware, software, and algorithmic techniques to enable training such large mod-
els. As the result of a joint effort between Microsoft and NVIDIA, we present details on the training
of the largest monolithic transformer based language model, Megatron-Turing NLG 530B (MT-NLG),
with 530 billion parameters. In this paper, we first focus on the infrastructure as well as the 3D par-
allelism methodology used to train this model using DeepSpeed and Megatron. Next, we detail the
training process, the design of our training corpus, and our data curation techniques, which we believe
is a key ingredient to the success of the model. Finally, we discuss various evaluation results, as well as
other interesting observations and new properties exhibited by MT-NLG. We demonstrate that MT-NLG
achieves superior zero-, one-, and few-shot learning accuracies on several NLP benchmarks and estab-
lishes new state-of-the-art results. We believe that our contributions will help further the development of
large-scale training infrastructures, large-scale language models, and natural language generations.

1 Introduction

The recently released foundation models [8], such as BERT [12], GPT-2 [52], and RoBERTa [37], represent
a paradigm shift in which AI systems can be built by pretraining a general class of models at scale and
then adapting them for a wide range of downstream tasks through transfer learning. Such models became
ubiquitous in state-of-the-art natural language processing (NLP) systems by embracing the effectiveness of
a combination of factors: the transformer architecture [67], self-supervised learning, few-shot condition-
ing [9], and fine-tuning.

*Affiliated with Brown University. Work done during internship at Microsoft.
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Figure 1: Trend of sizes of state-of-the-art NLP models with time.

Importantly, many recent works have established that scaling up models greatly improves their performance,
with especially substantial performance improvements in the zero-shot and few-shot settings. For example,
GPT-3 [9], an autoregressive language model with 175 billion parameters, performs competitively on lan-
guage tasks using in-context learning without fine-tuning or gradient updates. Such in-context learning
allows models to perform new language tasks with only simple instructions and a few optional examples.
The effectiveness of this method was further enhanced by recent model adaptation work such as prompt tun-
ing [33], which efficiently adapts large language models to individual tasks with robust task performance.
Other intriguing capabilities exhibited by large language models include, but are not limited to, free-form
generation of coherent, long-form text like news stories, generating responses with real-world knowledge,
as well as performing rudimentary mathematical operations.

The rapid development of large language models in recent years has also been fueled by growth in computa-
tional resources, availability of large datasets and evolving software stacks. State-of-the-art supercomputing
clusters address the computation, memory and networking need of model training at this scale. Careful
processing of high-quality, high-volume and diverse datasets directly contributes to model performance in
downstream tasks as well as model convergence. New approaches to numerical manipulation and training
recipes were developed aiming at improved optimization efficiency and stability. However, to sustain the
seemingly exponential growth of model parameter size (see Figure 1), substantial progress in developing
new methods, infrastructure and training capabilities is needed.

Training such large models is challenging for two reasons. First, it is no longer possible to fit the parameters
of these models in the memory of even the largest GPU. Second, the large number of compute operations
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required can result in unrealistically long training times if special attention is not paid to concurrently opti-
mizing the algorithms, software, and hardware stack. This calls for efficient parallelism techniques scalable
on both memory and compute, in order to achieve the full potential of thousands of GPUs.

Compelled by the impressive qualitative performance improvements owing to an increasing model size that
have been previously exhibited, our work continues the trend of large-scale language modeling. We built
Megatron-Turing NLG 530B (MT-NLG), a transformer-based language model with 530 billion parameters.
It is, to the best of our knowledge, the largest monolithic language model trained to date, with 3x more
parameters than GPT-3. It is worth noting that sparse models structures encompassing a higher total number
of parameters, such as mixture-of-experts [61], have been trained. However, it is unclear whether models
built following this approach would have comparable parameter efficiency and generalization capability.

Training MT-NLG was made feasible by numerous innovations and breakthroughs along all AI axes. Through
a collaboration between NVIDIA Megatron-LM [63, 43] and Microsoft DeepSpeed [57, 65], we created an
efficient and scalable 3D parallel system capable of combining data, pipeline, and tensor-slicing based par-
allelism. By combining tensor-slicing and pipeline parallelism, we can operate within the regime where
they are most effective. We built high-quality, natural language training corpora with hundreds of billions
of tokens, and co-developed training recipes to improve optimization efficiency and stability.

In this paper, we will discuss details of our methods during the development of MT-NLG, including training
infrastructure (Section 2), training dataset and training process (Section 3), model evaluation and other
interesting observations (Section 4). We will also present an in-depth study on social biases (Section 5),
in-context learning capability (Section 6) and qualitative analysis of the generation capability (Section 7) of
MT-NLG.

2 Large Model Training Infrastructure

Powered by NVIDIA A100 Tensor Core GPUs and HDR InfiniBand networking, state-of-art clusters (such
as NVIDIA Selene and Microsoft Azure NDv4) have enough compute power to train models with trillions of
parameters. However, achieving the full potential of these supercomputers requires memory- and compute-
efficient strategies for parallelizing across thousands of GPUs. In isolation, existing parallelism strategies
such as data, pipeline, or tensor-slicing have trade-offs in memory and compute efficiency and cannot be
used to train models at this scale. In this section, we discuss the system challenges of training large models.
We describe our software design, hardware system, and the performance evaluation of a unified, powerful
training infrastructure.

2.1 Challenges

We begin by discussing the challenges of training large-scale language models: memory and compute effi-
ciency, and the tradeoffs of various solution strategies such as data, tensor and pipeline parallelism.

2.1.1 Memory and Compute Efficiency

Memory Efficiency The memory requirements to train a 530 billion parameter model are far beyond what
is available on a single GPU device. We refer to Rajbhandari et al. [56] for an analytical study of memory
consumption during training.
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Mixed precision training [41] typically stores weights and gradients in half precision formats (i.e., 2 bytes
per parameter) for forward and backward propagations. It also keeps full-precision (4 bytes) copies in 32
bit float format for numerical stability in the optimizer. Assuming training with the Adam optimizer [27],
training consumess 20 bytes of memory per parameter:

2 + 4︸ ︷︷ ︸
weights

+ 2 + 4︸ ︷︷ ︸
gradients

+ 4 + 4︸ ︷︷ ︸
Adam states

= 20 bytes.

Training a 530 billion parameter model thus requires over 10 terabytes of aggregate memory for the model
weights, gradients, and optimizer states.

Activations can also consume significant memory and scale with the training batch size, sequence length, and
model dimensions. Checkpointing and recomputing the activations of each transformer block is a common
strategy for training large language models to reduce the memory required for activations. However, the
activations at the boundary between layers still needs to be stored and the aggregate activation memory is:

batch-size× number-of-layers× sequence-length× hidden-dimension× 2 bytes,

which is approximately 16.9 terabytes following our model and training configuration (Section 3.2).

Fortunately, activation memory requirements can be mitigated by virtue of gradient accumulation. Gradient
accumulation is a strategy in which the full training batch is split into micro-batches that are processed in
sequence and their resulting gradients are accumulated before updating the model weights. After computing
the gradient for a micro-batch, the associated activations can be freed. As a result, the training batch size
can scale without increasing the peak resident activation memory. For example, training with 1920 micro-
batches instead of a single micro-batch of size 1920 reduces the peak activation memory from 16.9 terabytes
to 8.8 gigabytes without changing the effective batch size.

Compute Efficiency While large GPU clusters can have thousands of high-throughput GPUs, achieving
high compute efficiency at this scale is challenging. A large batch size can be an effective way of increasing
compute efficiency, because it increases the arithmetic intensity of a kernel and helps amortize the time spent
stalled on communication and synchronization. However, the batch size that a model can be trained with has
an upper bound; using too large of a batch size can have negative effects on the model quality. With 4000
GPUs, even a large batch size of 4000 would only allow for a batch size of 1 per GPU and limit compute
efficiency.

2.1.2 Tradeoffs of Data, Tensor, and Pipeline Parallelism

Data Parallelism Data parallelism is a ubiquitous technique in deep learning in which each input batch
of training data is divided among the data-parallel workers. Gradients are communicated and aggregated
among data-parallel workers before updating the model weights. Data parallelism has several distinct ad-
vantages, including compute efficiency and ease of implementation. However, data parallelism relies on
scaling the batch size with the number of data-parallel workers, and cannot be made arbitrarily large without
affecting model quality.

Memory Efficiency: Data parallelism replicates the model and optimizer across all workers, and therefore
is not memory efficient. The Zero Redundancy Optimizer (ZeRO) [55] is a collection of optimizations that
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improve the memory efficiency of data parallelism by partitioning the replicated data among data-parallel
workers.

Compute Efficiency: The amount of computation performed by each worker is constant as we increase the
degree of parallelism and training batch size. Data parallelism can achieve near-perfect scaling at small
scales. However, the communication cost of aggregating gradients increases with the model size and can
limit compute efficiency on large models or systems with low communication bandwidth. Gradient accumu-
lation is also a common strategy for amortizing this communication cost by further increasing the batch size
and performing multiple forward and backward propagations on micro-batches while locally accumulating
gradients before aggregating and taking an optimizer step. Additionally, performance can be increased by
simultaneously communicating gradients that have already been communicated in parallel with computing
the gradients for other tensors.

Tensor Model Parallelism Tensor model parallelism (or, tensor parallelism) is a broad class of model
parallelism techniques that partitions the individual layers of the model across workers. Tensor parallelism
reduces the memory proportional to the number of workers. Megatron [63] uses model parallelism to effi-
ciently partition transformer blocks for large-scale language models.

Memory Efficiency: Tensor parallelism reduces the memory footprint of the model proportional to the num-
ber of workers. Depending on the model architecture, some of the activation memory is also reduced,
although there may still be some replications.

Compute Efficiency: Tensor parallelism introduces additional communication of activations in each forward
and backward propagation. Therefore, tensor parallelism requires high communication bandwidth to be ef-
ficient and is best kept within a single DGX sever where high bandwidth NVLink is available. Furthermore,
each model-parallel worker decreases the amount of computation performed between each communication
stage, impacting compute efficiency. Tensor parallelism is often used to expand the envelope of memory
and compute efficiency beyond what data parallelism alone can do.

Pipeline Model Parallelism Pipeline model parallelism (or, pipeline parallelism) divides the layers of the
model into stages that can be processed in parallel [23, 42]. As one stage completes the forward pass for a
micro-batch, the activation memory is communicated to the next stage in the pipeline. Similarly, as the next
stage completes its backward propagation, gradients are communicated backwards through the pipeline.
Multiple micro-batches must be kept in flight to ensure pipeline stages compute in parallel.

Memory Efficiency: Pipeline parallelism reduces memory proportionally to the number of pipeline stages,
allowing model size to scale linearly with the number of workers. However, pipeline parallelism does not
reduce the memory footprint for the activations of each layer. Additionally, each worker must store the
activations for all micro-batches in flight. We use a 1F1B pipeline schedule [42] that alternates forward and
backward propagations. A key benefit of 1F1B is that the number of micro-batches in flight is bounded by
the number of pipeline stages, as opposed to the total number of micro-batches in a full training batch.

Compute Efficiency: Pipeline parallelism has the smallest communication overhead of the three approaches,
as it only communicates the activations between the pipeline stage boundaries. However, it cannot scale
indefinitely. The degree of pipeline parallelism is bounded by the depth of the model, and increasing the
pipeline dimension decreases the compute efficiency like other forms of model parallelism. Pipeline paral-
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lelism also requires each of its stages to be load balanced for high efficiency.

Pipeline parallelism incurs a bubble overhead from filling and emptying the pipeline at the beginning and
end of each training batch. The size of the bubble overhead bounds the potential speedup from pipeline
parallelism. The fraction of perfect speedup achievable (or, parallel efficiency) is a function of the number
of pipeline stages (PP ) and total micro-batches (MB):

efficiency =
MB

MB + PP − 1
.

If the number of micro-batches is 4x or 8x the number of pipeline stages, the pipeline achieves 81% and
90% parallel efficiency from one pipeline stage, respectively.

From the above discussion, it is clear that none of the existing parallelism techniques can address all the
system challenges of training models with hundreds of billions of parameters. However, each parallelism
technique has its own merits and can be used in a complementary fashion. To this end, we use 3D par-
allelism, which is a systematic combination of data, tensor, and pipeline parallelism that addresses both
compute and memory efficiency simultaneously.

2.2 Software System — 3D Parallelism with DeepSpeed and Megatron

Our system software stack combines pipeline parallelism and data parallelism from DeepSpeed with tensor-
slicing from Megatron to create a flexible 3D-parallelism implementation. Data, tensor, and pipeline paral-
lelism each play a specific role in improving memory and compute efficiency.

Memory Efficiency: Transformer blocks are divided into pipeline stages, and the blocks of each stage are fur-
ther divided via tensor parallelism. This 2D combination simultaneously reduces the memory consumed by
the weights, gradients, optimizer states, and activations. However, we cannot partition the model indefinitely
without losing compute efficiency.

Compute Efficiency: To further accelerate training, we use data parallelism to scale to arbitrarily large
number of GPUs. For example, each 530 billion parameter model replica spans 280 NVIDIA A100 GPUs,
with 8-way tensor-slicing within a node and 35-way pipeline parallelism across nodes. We then use data
parallelism to scale out further to thousands of GPUs.

Our 3D parallelism implementation is optimized using topology aware mapping, which minimizes commu-
nication overhead across all forms of parallelism, and has an especially large impact on data parallelism.
This mapping is key to achieving excellent compute efficiency at scale. We discuss the details below.

2.2.1 Topology-Aware 3D Mapping

Each axis of parallelism is carefully mapped onto the workers to maximize compute efficiency by exploiting
two key architectural properties.

Mapping for Bandwidth Intra-node communication has a higher bandwidth than inter-node. We priori-
tize co-locating parallel groups with larger communication volumes in order to utilize the higher bandwidth.
Tensor parallelism has the largest communication overhead of the three strategies, and so we prioritize plac-
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ing tensor parallel workers within a node. When possible, data parallel workers are also placed within a
node to accelerate gradient communications. Otherwise, data parallel workers are mapped to nearby nodes
when possible. Pipeline parallelism has the lowest communication volume, and so we can schedule pipeline
stages across nodes without being limited by the communication bandwidth.

Bandwidth Amplification The volume of gradient communication by each data parallel group decreases
linearly as pipeline and tensor parallelism increase. Thus, the total communication volume is decreased from
pure data parallelism. Furthermore, each data parallel group performs its communication independently and
in parallel among a subset of more localized workers. As a result, the effective bandwidth for data parallel
communication is amplified by a combination of reduced communication volume and increased locality and
parallelism.

2.3 Hardware System

Model training is done with mixed precision using 16-bit bfloat on NVIDIA’s Selene [2] supercomputer
with 560 DGX A100 nodes. Each cluster node has 8 NVIDIA 80-GB A100 GPUs [1], connected to each
other by NVLink and NVSwitch [3]. Each node has eight NVIDIA Mellanox 200Gbps HDR Infiniband
HCAs for application communication, with an additional two HCAs per node for dedicated storage. The
nodes are connected in a three-level (leaf, spine, core) fat-tree topology with 850 switches. This topology
allows efficient all-reduce communication (which is the dominant communication pattern in deep learning
training). The cluster uses an all-NVME shared parallel filesystem for high-performance data access and
storage. The peak device throughput of an A100 GPU with 16-bit precision is 312 teraFLOP/s, resulting in
an aggregate of 1.4 exaFLOP/s of peak 16-bit precision performance.

2.4 System Performance Evaluation

We considered the end-to-end throughput of our system for the 530 billion parameter model with batch size
1920 on 280, 350, and 420 DGX A100 servers on Selene. We observed iteration times of 60.1, 50.2, and
44.4 seconds, respectively. These correspond to 126, 121, and 113 teraFLOP/s per GPU, respectively.

3 Training Dataset and Model Configuration

In this section we present details on the training datasets, our preprocessing techniques, and the model and
hyperparameters used in our experiments.

3.1 Training Dataset and Preprocessing

Resources such as Common Crawl (CC) provide snapshots of the web which can be utilized as a source of
language data. While these data sources contain an enormous amount of language data, they also require
carefully designed preprocessing steps in order to select data which is of reasonable quality. As prior work
has found (e.g., [9]), the quality of unfiltered Common Crawl data is lower than that of curated datasets
and steps should be taken to increase the average quality of data selected from Common Crawl for LM
pretraining. In addition to CC data, there are many other high quality data sources on the web. To compile
our training dataset, we made use of recent work aimed at collecting a diverse training set for language
modeling [17]. We additionally included RealNews [77] and CC-Stories [66] which have previously been
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Dataset Tokens (billion) Weights (%) Epochs

Books3 25.7 14.3 1.5
OpenWebText2 14.8 19.3 3.6
Stack Exchange 11.6 5.7 1.4
PubMed Abstracts 4.4 2.9 1.8
Wikipedia 4.2 4.8 3.2
Gutenberg (PG-19) 2.7 0.9 0.9
BookCorpus2 1.5 1.0 1.8
NIH ExPorter 0.3 0.2 1.8
ArXiv 20.8 1.4 0.2
GitHub 24.3 1.6 0.2
Pile-CC 49.8 9.4 0.5

CC-2020-50 68.7 13.0 0.5
CC-2021-04 82.6 15.7 0.5

Realnews 21.9 9.0 1.1
CC-Stories 5.3 0.9 0.5

Table 1: Datasets used to train the MT-NLG model. The top 11 rows are from the Pile dataset, followed by
two Common Crawl snapshots, RealNews, and CC-Stories datasets.

used for large LM pretraining [4, 63].

3.1.1 Training Dataset

We largely built upon prior work described in [9, 17] to generate our training set. First, we selected a subset
of the datasets from The Pile that we observed to be of the highest relative quality (see Table 1). Then,
following a similar approach as that used to generate Pile-CC in [17], we downloaded and filtered two full
CC snapshots (2020-50 and 2021-04). At a high level, the steps taken for CC data include text extraction
from raw HTML provided in WARC files, scoring extracted documents using a classifier trained on high
quality data, and filtering documents according to their scores. These steps are covered in more detail
in Section 3.1.2. Finally, we used fuzzy deduplication to remove duplicate and near duplicate documents
from the entire dataset as well as n-gram based filtering to remove downstream task data in order to avoid
contamination.

3.1.2 Pre-Processing Details

Common Crawl: As mentioned previously, Common Crawl comprises an immense amount of data. We
chose to process two snapshots, 2020-50 and 2021-04, with the aim of acquiring around 150B tokens of
training data. The first step of this process is language detection [11] and text extraction from the raw
HTML included in the Common Crawl WARC files1. Following the rationale presented in [11], we used
the pycld22 and jusText3 libraries for these tasks. We observe that the language detection and extraction
step reduces the number of documents significantly, with only around 25% of documents being classified as

1https://github.com/leogao2/commoncrawl_downloader
2https://pypi.org/project/pycld2/
3https://pypi.org/project/jusText/
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English and having non-empty body content.

In order to select high quality documents from these extractions, we trained a 2-gram fastText [48] classifier.
For positive documents, we randomly select 500000, 295000, and 5000 documents from OpenWebText2,
Wikipedia, and Books3, respectively, similar to [9]. For negative documents, we randomly sampled an equal
number of documents from the text extraction output described above. We held out 10% of these documents
for evaluation of the classifier, which achieved an accuracy of 90.3% on the held out set after training. The
classifier was applied to each of the extracted documents and the probability of the positive label was taken
as the score for the document.

Using the scores produced by the process above, we filtered the extracted documents with a Pareto distribu-
tion with α = 3. This resulted in around 80% of text content being filtered. While our choice of α is lower
than some previous works [9], manual inspection of the data indicated that it was of acceptable quality and
the use of α = 3 allowed us to reach and slightly exceed our original token goal after deduplication.

Other Datasets: In addition to Common Crawl data, we leveraged a number of other previously gener-
ated datasets. From The Pile, we selected Books3, OpenWebText2, Stack Exchange, PubMed Abstracts,
Wikipedia, Gutenberg (PG-19), BookCorpus2, NIH ExPorter, and Pile-CC datasets. We also included the
CC-Stories and RealNews datasets used to train Megatron [63]. For detailed discussions of the preprocessing
used for these datasets, we refer to [17].

Fuzzy Document Deduplication: Content on the internet is often duplicated across many documents. To
compound this issue, the URLs scraped in different Common Crawl snapshots are not necessarily unique.
Indeed, for the snapshots we chose 53% and 34% of documents come from new URLs not seen in previous
snapshots. Furthermore, it is likely that content contained in our other datasets, such as web content from
OpenWebText2 or Wikipedia, will also exist in Commom Crawl.

Exact match duplicates would be computationally expensive, so we opted to take a fuzzy deduplication
approach similar to other works [9, 17]. We used a hashing vectorizer with 1,048,576 features to vectorize
documents (HashingVectorizer from scikit-learn4), calculated min-hashes of the vectorized documents
(using datasketch5), and performed Locality Sensitive Hashing (LSH) through datasketch on all min-
hashes in order to identify potential duplicates. We set our LSH parameters in such a way as to increase the
likelihood that documents with Jaccard similarity ≥ 0.8 would occur in at least one LSH bucket together.
Specifically, we used 20 bands of size 13 for a total of 260 hash functions.

After performing LSH, we processed each bucket and calculated an approximation of the all-pairs Jaccard
similarity in order to remove false positive duplicates introduced by LSH. This approximation consisted of
i = 0..10 iterations of sampling a random document di, calculating the Jaccard similarity with everything
remaining in the bucket, removing those documents above the 0.8 threshold and marking them as duplicates
of di. After all buckets were processed and duplicates (at the threshold) were approximately discovered,
we constructed a sparse document graph and found the connected components therein (using scipy). Each
connected component represents a set of documents that we consider similar enough to be duplicates, and
from which we select a single representative. Because the datasets are of varying quality, we defined a
priority order based on which dataset to use when selecting representative documents, and the first document

4https://scikit-learn.org/stable/
5http://ekzhu.com/datasketch/documentation.html
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encountered from the highest priority dataset within each component was ultimately kept, while the rest were
discarded.

Additional Processing: We use the Ftfy library [64] on the training dataset to convert bad unicode text to
good unicode text. Additionally, we use the langdetect [11] library to identify non-English documents
and remove any document such with less than 512 characters. If a training document contains the word
“javascript” and has less than 256 characters, we remove that document as well.

Downstream Task Data Removal: We use n-grams to remove texts that occur in the downstream tasks from
the training datasets. When we find an n-gram match between a task document and a training document, we
split the training document into two pieces by removing the n-gram along with 200 characters from both of
its sides. We also remove any split training document with fewer than 200 characters, or training documents
which were split more than 10 times. Our deduplication process and the values of n used for different tasks
are similar to [9]. Out of 319,781,622 documents from the 15 deduplicated datasets mentioned above, during
task deduplication 35,988 documents were split, 1,109 documents were removed, 54 documents were split
more than 10 times, and 9,891 were trimmed at the beginning or the end.

Blending Datasets: We opted to blend the datasets into heterogeneous batches according to the sampling
weights given in Table 1. However, the mixing weights do not result in an even split of the samples in each
batch for our chosen batch size. To resolve this issue, we track the under- and oversampling for each dataset
and slightly adjust the batch composition at each step in order to maintain a sample distribution as close as
possible to the chosen mixing weight distribution.

3.2 Model and Training Process

We used the architecture of the transformer decoder [52], which is a left-to-right, autoregressive, generative
transformer-based language model, and scaled it up to 530 billion parameters. The number of layers, hidden
dimensions, attention heads are 105, 20480, and 128, respectively. The sequence length is 2048 and the
global batch size is 1920. We used 8-way tensor and 35-way pipeline parallelism. The learning rate is
5.0e−5. We used one billion tokens for linear learning rate warmup. We used cosine decay for the learning
rate targeting to reach 10% of its value over 340 billion tokens. Over the first 12 billion tokens, we started at
a batch size of 32 and gradually increased the batch size in increments of 32, until we reach the final batch
size of 1920. We used Adam optimizer with β1 = 0.9, β2 = 0.95, and ε = 10−8. We clipped the gradient
norm at 1.0 and used a weight decay of 0.1. For weight initialization, we used a normal distribution with
zero mean and a standard deviation of 4.0e−3. Our training dataset consists of 339 billion tokens and we
trained MT-NLG on 270 billions tokens by blending the 15 training datasets as described above. We also
set aside 2% of our data for validation.

At the scale of models such as MT-NLG, training stability is a fundamental challenge. While training the
model, we observed that the learning rate, weight initialization, and Adam optimizer parameters directly af-
fect model stability. We projected the learning rate for MT-NLG by plotting the learning rates with the size of
the models in [9]. Higher learning rate increases the model instability. We used approximately

√
1/(3 ∗H)

as a standard deviation for weight initialization, where H denotes the size of the hidden dimension. Similar
to [45], we also observed that using higher variance for weight initialization fails to converge. We also
reduced β2 from its standard value of 0.99 to reduce spikes in the training loss.
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Figure 2: Validation loss of MT-NLG.

4 Results and Achievements

To provide a better understanding of how language model performance improves during training, we first
present the validation loss curve (cross entropy) of MT-NLG in Figure 2. Our validation dataset consists of
5.5 billion tokens, so measuring the loss using the entire dataset is computationally expensive. We therefore
shuffle the sequences in the validation dataset and then during each computation of validation loss, we run
four iterations with global batch size of 1920. This leads to evaluating on a total of 16 million consecutive
tokens for each loss computation.

The validation cross-entropy loss is 3.15 after the model is trained on the first 1 billion tokens. As mentioned
earlier, we increase the batch size linearly over the first 12 billion tokens. At the end of this phase, the loss
becomes 2.31. When the model reaches our targeted number of tokens, 270 billion, the validation loss
becomes 1.85.

To evaluate the quality of our model (as well as other pretrained language models), we adopt a zero-/one-
/few-shot evaluation setting similar to prior work [9, 53]. For better reproducibility, we base our evaluation
on the open-source project, lm-evaluation-harness [18], and made task-specific changes as appropriate
to align our setting more closely with prior work. We will discuss any idiosyncrasies of each task in the
task-specific paragraphs. In addition, for our few-shot experiments, we do not do any search for the optimal
number of shots, and directly use the configurations suggested in [9]. In most cases, they seem to perform
sufficiently well.

To ensure the evaluation is comprehensive, we choose eight tasks from five different categories: completion
prediction, reading comprehension, commonsense reasoning, natural language inference and word sense
disambiguation. We present comparisons on these tasks with previous works on pretrained large language
models, while also providing supervised baselines whenever applicable to provide context for the gap be-
tween “generalist” models like pretrained language models and “specialist” models that are finetuned on the
target task.
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LAMBADA (acc)

Model Zero-shot One-shot Few-shot

GPT-3 76.20 72.50 86.40
Gopher 74.50 - -
MT-NLG (ours) 76.56 73.06 87.15

Table 2: LAMBADA zero-shot, one-shot and few-shot accuracy. MT-NLG outperforms previous models
across different settings and establishes new SOTA for all 3 settings. We did not find any recent strong
supervised baseline for LAMBADA, hence we omit the comparison with supervised models here.

Many evaluation tasks involve scoring candidate completion sentences with the model. Unless otherwise
stated, the “likelihood” mentioned in the following context refers to the probability of the candidate answer
(conditioned on the prompt) normalized by its number of tokens.

4.1 Completion Prediction

LAMBADA The LAMBADA [49] dataset is a collection of narrative passages, specifically selected such
that a human can easily guess the last word if the whole passage is given as context, but would not be able
to answer if only given the last sentence in the passage. This task tests language models’ capabilities to
understand and retain information from a broader discourse context, instead of just relying on local context
or simple statistical patterns.

When evaluating this task zero-shot, we feed each passage to the model as input and check if the model can
produce the correct last word via greedy generation (picking tokens with maximum probability). However,
for one-/few-shot evaluations, we switched over to a cloze-style prompt format to better suggest to the model
that the task is about predicting the last word of a sentence as opposed to arbitrary plausible continuation. In
such a case, we would insert “ . → ” before the last word, e.g. “... Paul and Debbie looked

at each other, then at . → Bob” and examine if the model would predict the correct word
after the “→”. We observe significant performance boost in few-shot settings with the cloze-style prompting,
although one-shot performance takes a hit, which aligns with observations from prior work [9]. Our model’s
performance in terms of accuracy is shown in table 2, and we are establishing new state-of-the-arts on
LAMBADA for all 3 settings on its test set.

4.2 Reading Comprehension

In this section, we discuss the evaluation of MT-NLG for reading comprehension. We selected two datasets
targeting different styles of questions, and have found very different trends when we increase the number of
examples for them during evaluation.

RACE RACE [31] is a large-scale reading comprehension dataset, whose passages and questions are
extracted from English examinations. Each example in this task consists of an article and several question-
answer pairs. To construct prompts, we prepend “Article: ”, “Question: ”, and “Answer: ” tags
to the article, questions and answers text respectively and join them together with a newline in between. The
actual answer to the last question is removed, ending the prompt at the last “Answer:”. We then use the
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model to score all possible candidate answers as continuations after “Answer:” and pick the highest-scoring
one as the model’s choice.

There are two question types in this dataset: direct questions (e.g. “Which of the following rela-

tionships is healthy?”) and cloze-style questions (e.g. “The author of the text seems to

.”). We treat both question types the same way as described above, which is different from the default used
by lm-evaluation-harness [18]. Furthermore, following GPT-3 [9], we use

P (completion|context)
P (completion|answer context)

as the scoring criterion, where context is the full prompt, and answer context is just the string “Answer:”.
Similar to GPT-3, we observe a better performance compared to using length-normalized log-probabilities
as a scoring criterion for RACE.

The dataset contains two subsets, RACE-h and RACE-m, corresponding to hard and medium problems. We
report results on the RACE-h set in Table 3. We observe that RACE-h performance does not benefit much
from including more examples in the prompt. Nevertheless, our zero-shot performance already surpasses
few-shot performance of GPT-3 by +1.14%.

For RACE dataset, one of the best supervised models to date is an ALBERT ensemble [24]. It achieves
91.4% accuracy on RACE-h, which is significantly higher than the results obtained by pretrained language
models. Recent work [53] has greatly narrowed the gap between prerained language models and supervised
models, but the difference is still large.

BoolQ BoolQ [10] is a dataset of yes/no questions, with supporting Wikipedia paragraphs to answer them.
We concatenate the supporting paragraph, the question (prepended with “Question: ”) and a string
“Answer:” at the end as the full prompt. We use the model to score “yes” and “no” as continuations
and choose the option with higher likelihood given by the model. Our model’s performance is shown in
Table 3. We observe that BoolQ evaluation benefits significantly from seeing many examples in the prompt,
which differs from results on the RACE task. However, one common pattern here is that reading compre-
hension tasks can get a decent improvement with just one example, possibly because the task prompting
format is confusing to the model, and the given example is enough to condition the model to follow the
passage-question-answer format.

For BoolQ, T5 + UDG [69] is currently the best supervised model. It achieves 91.4% accuracy on this task.
However, compared to RACE-h, we observe that the gap between supervised model and pretrained language
model is much smaller and that MT-NLG further narrows the gap by a significant amount.

4.3 Commonsense Reasoning

An interesting aspect of pre-trained language models is how much world knowledge they preserve from
their training data. To this end, we evaluate our models on two tasks relating to commonsense reasoning/in-
ference. The supervised baseline we compare to on these 3 datasets is UNICORN [38].

6Gopher uses a different prompt format compared to GPT-3 and MT-NLG.
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Task Model Zero-shot One-shot Few-shot Supervised

RACE-h GPT-3 45.50 45.90 46.80 -
Gopher - - 71.606 -
MT-NLG (ours) 47.94 48.42 47.94 -

ALBERT (ensemble) - - - 91.40

BoolQ GPT-3 60.50 76.70 77.50 -
MT-NLG (ours) 78.20 82.51 84.83 -

T5 + UDG - - - 91.40

Table 3: Reading comprehension results on RACE-h and BoolQ. BoolQ scores significantly improve from
zero-shot to few-shot, while RACE-h does not benefit from having many examples. This is likely due to the
fact that BoolQ’s prompt/answer pairs have a more structured format (single-word, boolean answers) which
the model can only learn through few-shot context, whereas RACE-h answers are already fairly close to
natural sentences and the model benefits comparatively less from seeing examples.

Winogrande Winogrande [58] is a dataset that seeks to expand the Winograd Schema Challenge in both
scale and difficulty. The task is in the form of pronoun resolution problems that are designed to be unsolvable
for statistical language modeling alone, and that require commonsense knowledge about the underlying
events and objects to solve.

For this task, we adopt the evaluation method used by previous work [9, 52, 66]. We substitute the actual
noun with an ambiguous pronoun, and evaluate the likelihood of the partial sentence starting from the
pronoun conditioned on the previous context. The pronoun substitution that leads to the highest likelihood
is selected as the model answer. The results are shown in Table 4. Compared to GPT-3, we observe a strong
improvement in terms of zero-shot accuracy (+2.81%), though the gap narrows for few-shot. We observe
that having one example in context only marginally improves performance, but moving to the few-shot
setting significantly improves model performance. As we will see in the other two tasks, this appears to be
a general trend: commonsense reasoning performance scales well with number of shots. This is a distinct
trend compared to what we see in reading comprehension.

HellaSWAG HellaSWAG [76] is a commonsense reasoning dataset where a goal is given and the model
is tasked with choosing the most likely follow-up actions. The examples are mined from Wikihow and
Activitynet Captions [29] dataset. During evaluation, we prompt the model with the goal, then evaluate the
likelihood of each candidate answer conditioned on the goal, and choose the candidate answer with the high-
est likelihood. The results are shown in Table 4. We achieved significant improvements compared to GPT-3
in all 3 settings, with our zero-shot performance surpassing few-shot for GPT-3. Similar to Winogrande,
moving from zero-shot to one-shot doesn’t improve performance much (in fact, it decreases it in this case),
but including more examples in the few-shot setting substantially increases performance.

PiQA PiQA [6] is a binary-choice question answering dataset targeting understanding of physical inter-
actions. It poses questions about how to complete a daily activity, and the model is tasked with choosing
between two candidate answers describing different actions to take.

For evaluation on PiQA, we prompt the model with the question/goal description and then evaluate the
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Task Model Zero-shot One-shot Few-shot Supervised

Winogrande GPT-3 70.20 73.20 77.70 -
Gopher 70.20 - - -
MT-NLG (ours) 73.01 73.72 78.85 -

UNICORN - - - 91.28

HellaSWAG GPT-3 78.90 78.10 79.30 -
Gopher 79.20 - - -
MT-NLG (ours) 80.24 80.20 82.42 -

UNICORN - - - 93.90

PiQA GPT-3 81.00 80.50 82.30 -
Gopher 81.80 - - -
MT-NLG (ours) 81.99 80.96 83.19 -

UNICORN - - - 90.10

Table 4: Commonsense reasoning results on Winogrande, HellaSWAG and PiQA. We generally observe
minor gain or even performance dips when moving from zero-shot to one-shot, but would observe signif-
icant gains when we move from zero-shot to few-shot settings. On common sense reasoning, supervised
baseline [38] still outperforms LMs with few-shot learning settings.

likelihood of the candidate sentences for two different actions, choosing the option with higher likelihood
as the model answer. The results are shown in Table 4. We once again observe the pattern that one-shot
performance degrades compared to zero-shot, while few-shot performance gets a decent boost.

4.4 Natural Language Inference

In this section we discuss the evaluation of our model on natural language inference (NLI) tasks.

ANLI The ANLI [46] dataset is an adversarially mined NLI dataset that aims to create a difficult set of NLI
problems. The dataset has 3 iterative rounds of data collection; here, we evaluate with round 2 data. During
evaluation, we rephrase the NLI problem into a question-answering format: each example is structured as
“<premise>\nQuestion:<hypothesis>. True, False or Neither?\nAnswer:” and then we ex-
amine which continuation among True, False or Neither has the highest likelihood assigned by the model,
and pick the most likely option as the model answer. The results are shown in Table 5. On ANLI, we observe
that, similar to reading comprehension results, our model is able to get a performance gain by just having one
example, and moving beyond that into few-shot setting does not further improve performance. Again, this
is possibly because one example is important for instructing the model on the premise-hypothesis-answer
format, but additional examples may be unrelated in terms of content, and including them does not introduce
new knowledge for the model. On ANLI, the supervised baseline we compare to is InfoBERT [68].

HANS Heuristic Analysis for NLI Systems (HANS) [40] is an NLI dataset designed to evaluate the ten-
dency of models to exploit fallible, superficial syntactic heuristics in NLP data. It offers a controlled evalua-
tion setting where examples are generated from templates of specific grammatical and syntactical structures
(each type of structure referred to as a “subcase”). The task format is akin to ANLI, with the NLI problem
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Task Model Zero-shot One-shot Few-shot Supervised

ANLI (R2) GPT-3 35.40 33.90 34.00 -
MT-NLG (ours) 36.60 39.70 39.60 -

InfoBERT - - - 51.40

HANS GPT-2 54.79 49.92 49.79 -
MT-NLG (ours) 51.61 60.01 73.16 -

Table 5: Natural language inference results on ANLI (R2) and HANS datasets. At zero-shot, models are
struggling at chance level for HANS, yet MT-NLG is very effective in leveraging in-context examples as the
number of shots increases, resulting in a large performance boost. Scaling behavior w.r.t number of shots is
shown in Figure 5.

converted into a binary question answering format (see Section A in Appendix for details). We implemented
this task and included it in our evaluation among existing tasks in the lm-evaluation-harness [18].

Besides evaluating our model’s core language understanding capabilities, we use the HANS dataset primar-
ily as a means to analyze its behavior in few-shot learning, which is presented in Section 6. We report our
aggregate results obtained during the analysis experiments in Table 5, and a comparison of various MT-
NLG checkpoints across different number of shots in Figure 5. No prompt-based generative baselines have
been previously released on this dataset, so we evaluate GPT-2 for comparison. As described in Section 6,
performance at zero-shot is driven by inherent model biases and accuracy is only slightly better than random
chance (50%). However, large models which have been sufficiently trained can take advantage of in-context
examples in the prompt to dramatically improve performance, while weaker models can be confused when
given additional in-context examples, with GPT-2 never performing substantially better than random chance.

4.5 Word Sense Disambiguation

WiC The Word-in-Context [50] dataset presents a task of identifying the intended meaning of polysemous
words from their context. Each dataset example consists of 2 sentences, both containing the same polyse-
mous word. The task is to identify if the intended meaning of the polysemous word is the same or not in the
two sentences.

To perform zero- /few-shot evaluations on this task, we convert the problem into a question answering
format: “Sentence 1:<sentence1>\nSentence 2:<sentence2>\nQuestion: Is the w-

ord <target word> used in the same way in the two sentences above?\nAn-
swer:”. Then we examine the model-assigned likelihoods for “yes” and “no” as continuations, and pick the
one with higher likelihood as the model answer. Results can be found in Table 6. We observe that our model
performs slightly below chance at zero-shot, but surpasses chance as soon as we move to few-shot. On the
other hand, the supervised T5 + UDG model surpasses chance-level significantly.

7Number taken from original paper.
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WiC (acc)

Model Zero-shot One-shot Few-shot Supervised

GPT-3 0.007 48.60 55.30 -
MT-NLG (ours) 48.59 51.25 58.46 -

T5 + UDG - - - 77.9

Table 6: Word-in-Context dataset results. We see significant improvements moving from zero-shot to few-
shot, surpassing chance level performance.

5 Exploring Social Biases

5.1 Introducing the Challenge of Social Bias in NLP Models

Natural language models are trained on massive datasets collected from a wide variety of uncurated sources.
Unfortunately, biased communication and writing is pervasive on the internet, and spans the gamut from
very inflammatory and overt bias that may also be straightforward to identify, to more subtle forms of bias.
As has been shown in other work (for example [9, 71, 53]), bias issues that exist in the dataset can be learned
by models as they are trained on the data. This limits the deployment of large language models, despite their
powerful capabilities.

Although not the focus of this paper, we note that ongoing research in several areas aims to mitigate this
bias. For example,

a) Training set filtering – where the elements of the training dataset are analyzed and elements that show
evidence of bias are removed from the training data [44].

b) Training set modification – where elements of the training dataset are randomized with respect to
variables such as gender and ethnicity that should be neutral with respect to the subject matter [72].

c) Prompt engineering – where the inputs to the model for each query are modified to steer the model
away from bias [60, 14].

d) Fine tuning – where the trained model is retrained to unlearn biased tendencies [19, 20, 28].

e) Output steering – where a filtering step is added to the inference procedure to re-weight output values
and steer the output away from biased responses.

In this work, we have trained a baseline model without any anti-bias countermeasures. We want to empha-
size that we do not believe that such models should be deployed in production use without countermeasures,
and specifically, we do not believe that the MT-NLG model should be deployed as such. Rather, it is our
expectation that this work will be a valuable resource supporting research efforts into anti-bias countermea-
sures and as a starting point for future deployments that make use of such countermeasures. We are also
confident that future work combining state-of-the-art large language model training with state of the art anti-
bias countermeasures will result in models that are both very powerful and able to minimize the presence of
bias in results.
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We now present a preliminary analysis of the bias of our model, focusing on issues related to gender,
ethnicity, and religion. Similar to Brown et al. [9] and Rae et al. [53], we present association tests, co-
occurrence analyses and sentiment analyses designed to assess bias along a variety of dimensions. This
section serves to document and quantify some of the problems relating to bias of the model that will need to
be addressed in future work.

5.2 Gender and Occupation Analysis

We begin by investigating the association between gender and occupations, to understand if the model
learns the societal biases present in its training data.8 Following previous work [7, 39], we use the list of
323 occupations shown in Tables 18 and 19 of Section B. The template used in this experiment is “The
{occupation} was a {gender identifier}”, and the gender identifiers used are male, man, and female, woman.

Given a fixed occupation, we calculate the probability the model assigns to different gender identifiers
and count the number of times male identifiers had a higher probability than female identifiers. Over all
323 occupations, that percentage is 78%, suggesting that the model is generally biased towards masculine
identifiers.

We calculate average occupation bias scores, which measures whether the model tends to associate a specific
gender with a given occupation. Following Brown et al. [9], occupation bias scores are calculated as

1

Nocc

∑
occ

(log(P(female identifier|prompt)) - log(P(male identifier|prompt)))

Here, a score of 0 indicates that there is no biased association between a specific occupation and gender
identifiers; a positive score indicates a skewed association between female identifiers and occupations; and
a negative score indicates a skewed association between male identifiers and occupations. The average bias
score provides an indication of how far or close were the probabilities of male and female identifiers for all
the occupations. Our model exhibits an average bias score of−0.77, indicating that the model leans towards
male identifiers for more occupations.

To give some context for these two results, we note that for GPT-3, the percentage of occupations for which
male identifiers had a higher probability over female identifiers is 83% and the average bias score is −1.11
[9]. We should note that these results are not directly comparable to our results due to a difference in the
number of occupations and type of template used but do suggest that the model is not particularly more or
less biased than others trained in similar ways on similar corpora. It also suggests that more work must be
done to control this bias when considering using this model.

5.3 Adjective Co-Occurrence Analysis

Next, we analyze the adjectives that co-occur with prompts related to gender, ethnicity and religion. Similar
to the setup in Brown et al. [9], for each prompt we sample 800 different generations of length 50 each.
Each generation has a temperature of 1.0 and top p value of 0.9. We use the respect templates presented in
Sheng et al. [62] to create our prompts. For gender and ethnicity, the prompt is created as “{gender/ethnicity

8For all gender related studies we have used only the binary male and female identifiers. We note that gender may be considered
along a spectrum [13] but use binary identifiers due to lack of templates in prior work.
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Male Identifiers He, The man, The father, The son
Female Identifiers She, The woman, The mother, The daughter
Ethnic Identifiers The {ethnicity} man, The {ethnicity} woman, The {ethnicity} person
Templates {identifier} was very, {identifier} would be described as,

{identifier} was known for, {identifier} was regarded as,
{identifier} was thought of as, {identifier} was well-known for

Table 7: Identifiers used for gender and ethnicity. In racial identifiers, the {ethnicity} would take one of the
following values: Asian, Black, and White. The templates [62] mentioned above are for both gender and
ethnic studies. The {identifier} in templates will be replaced by gender or ethnic identifiers.

Figure 3: The 100 most common words associated with male and female templates, ordered from most
common (on the left) to least common (on the right). Identical words are connected with blue lines. The
model generally assigns similar words similar probabilities regardless of gender; distinctive words for each
gender are noted in green.

identifier} template”. Example prompts are “The woman was regarded as” and “The Black person would be
described as”. The identifiers and templates used to create the prompts are provided in Table 7.

We split the generated text into sentences and consider only the first sentence for our analysis, after observing
that only the first sentence is descriptive of the given identifiers (and that the following sentences typically
describe random events or stories). We analyze the most frequent 100 adjectives that co-occur with each of
the identifiers of gender and ethnicity.

Generally speaking, there are two factors that are important to consider for co-occurrence analysis:

a) The ordinal position of distinct words. Higher position / lower frequency is good because it indicates
a low intensity of bias with respect to a particular stereotypical or offensive adjective, even if the
adjective itself is highly offensive.

b) The magnitude of stereotypical or offensive content implied in the distinct adjective. Some adjectives
are relatively neutral while others are strongly offensive.

We would like to note that while co-occurrence analysis provides us with a rich understanding of the fre-
quency of surface level forms such as words that co-occur with certain identifiers, they fail to take into
account sentiment or context associated with each adjective.

Gender Analysis Encouragingly, we note that, for gender, among the top 100 most frequent adjectives,
almost 80 were exactly the same, as shown in Figure 3. In the figure, words are ordered left-to-right in order
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Male top(51), violent(53), eccentric(59), military(60), polite(62), serious(63), national(67),
different(68), aggressive(71), right(78)

Female beautiful(2), attractive(37), female(45), mental(50), sweet(57), charitable(60), perfect(62),
slim(67), only(72), excited(74)

Table 8: Top 10 distinct words with the highest frequency from the 100 most frequent words that occurred
for Male and Female identifiers. The numbers in parenthesis represent the word’s ordinal position in the top
100 most frequent words list.

Asian Chinese(23), slim(29), yellow(39), Japanese(50), average(55), straight(70), inscrutable(72),
desirable(77), feminine(88), pleasant(91)

Black civil(29), lazy(44), immoral(53), animalistic(54), capable(66), equal(73), stupid(74), lower(78),
athletic(88), incapable(82)

White fair(62), true(68), ultimate(71), higher(72), virtuous(74), racist(79), non-white(82), civilized(83),
pale(90), responsible(92)

Table 9: Top 10 distinct words with the highest frequency from the 100 most frequent words that occurred
for ethnicity identifiers. The numbers in parenthesis represent the word’s ordinal position in the top 100
most frequent words list.

of probability; if a word is in the top 100 of both genders, it is linked by a blue line. Generally, the model
draws upon an equal set of words, but there are notable exceptions that we highlight in green.

In the interests of highlighting the bias of the model, we also present the 10 most distinct words with the
highest frequency for each gender (but emphasize that this hides the non-bias discussed previously). Table 8
presents the most distinct words that had a higher frequency of co-occurring with one gender over the other.
We observe that the model conforms to gender stereotypes that are present in the training data, such as using
more adjectives related to appearance for female identifiers and using a more diverse set of adjectives for
male identifiers. On the other hand, qualitatively, the ordinal position of the stereotypical distinct adjectives
is relatively higher (less frequent), which is a good property

Ethnicity Analysis For ethnicity, results for the same adjective co-occurrence analysis for the 10 dis-
tinct words with the highest frequency are shown in Table 9. We qualitatively observe that more positive
adjectives are associated with the White ethnicity, and that many quite offensive adjectives are associated
with other ethnicities. We note that the model portrays offensive stereotypes associated with each ethnicity
as well. In addition, and arguably more importantly, we observe that the ordinal position of the distinct
adjectives is higher than in the gender case.

These results are clearly unacceptable for deployment and confirm our intuition that NLP models should
require use of anti-bias countermeasures as described in the introduction to this section. We look forward to
repeating these tests with such countermeasures applied and validating quantifiable improvement in results.

Religion Analysis For religion, we perform an analysis of the co-occurring words similar to gender and
ethnicity. The three prompts used for religion are “The {religious practitioners} are”, “The {religious practitio
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Atheism belief(20), think(40), science(43), lack(53), reason(54), preach(62), existence(63),
thinking(76), angry(80), human(81)

Buddhism compassion(13), mindfulness(15), Buddha(17), monk(21), mind(23), robes(24), calm(30),
peaceful(32), living(44), chanting(46)

Christianity Christ(16), Jesus(17), bible(34), told(45), forced(69), families(73), giving(74), charity(77),
poor(82), churches(86)

Hinduism yoga(11), India(14), tolerance(23), caste(44), traditions(46), Indian(50), system(59),
husband(60), skin(68), respect(72)

Islam hijab(11), modesty(27), prophet(34), law(35), cover(47), Allah(55), face(57), mosque(59),
countries(65), veil(67)

Judaism Jewish(8), white(18), money(19), Israel(40), black(42), bad(46), old(50), race(51),
birth(59), intelligence(63)

Table 10: Top 10 distinct words with the highest frequency from the 100 most frequent words that occurred
for religion identifiers. The numbers in parenthesis represent the word’s ordinal position in the top 100 most
frequent words list.

ners} are known for” and “The {religious practitioners} practice”. 9 Table 10 shows the top 10 most distinct
words that co-occur with a higher frequency for each of the six religions. Encouragingly, mostly we do not
observe negative words used for any particular religion with higher frequency.

5.4 Sentiment Analysis

We use sentiment analysis as an additional method to measure bias. We chose to focus on ethnicity for
this analysis because ethnicity was the dimension that showed the strongest bias issues in the Adjective
Co-Occurrence Analysis Section above.

We apply this method by analyzing the sentiment of all the words that co-occur. For each word in the
generated text, we use SentiWordNet [51] to measure both positive and negative scores on a scale of 0 to
100. We average these scores for all words in the generated text. Figure 4 shows the average sentiment
scores for each of three ethnicities.

We observe that for the Black ethnicity, the negative sentiment words co-occur with considerably higher
proportion, and that correspondingly positive sentiment words co-occur with lower proportion as compared
to the other ethnicities. The sentiment for Asian and White ethnicities are more comparable to each other.
Clearly, the bias in sentiment exhibited in the results is also severe and validates the need for anti-bias
countermeasures as part of natural language training.

5.5 Discussion

Large NLP models such as MT-NLG have demonstrated amazing power to assimilate vast quantities of
unstructured information and make it easily accessible. However, they have also been shown to have a

9Note that we only use three templates to prompt the model, and hence this study is not as robust as our others, but is included
for completeness.

21



S
en

tim
en

t S
co

re

0

10

20

30

Asian Black White

positive negative

Figure 4: Positive and Negative sentiment scores for each ethnicity

problem with absorbing bias that is embedded in the information they are given to learn from.

We have included this section to examine the biases present in our model, which was trained without any
countermeasures to combat bias in the input training set. Based on results from previous work, we expected
to find evidence of significant bias in the model, and that expectation was confirmed in our results, with
several instances of pervasive, strong, and offensive bias. Models trained without proper countermeasures
should not be deployed as-is (i.e., without anti-bias countermeasures), for this reason.

6 Natural Language Understanding and In-Context Learning

To evaluate the core language understanding capabilities of large transformer-based language models as
directly as possible, it is essential that we assess their ability to grasp the systematicity of language: in other
words, their ability to learn implicit grammatical and syntactical rules on which humans consciously or
unconsciously rely in order to generalize to arbitrarily many, unprecedented utterances. In this section, we
attempt this with the HANS dataset, but begin with a discussion of limitations of other NLP benchmarks.

6.1 Limitations of NLP benchmarks

Pretrained language models based on the transformer architecture have dominated the state of the art in NLP
over the last few years, achieving impressive performance in a wide array of downstream tasks. In certain
tasks, such as natural language inference, they have been shown to even surpass human-level performance
[54]. Nevertheless, there has been mounting evidence in recent work suggesting that the performance of
these models as measured by the benchmark datasets may be overestimated, non-generalizable and at least
partially driven by exploiting existing spurious correlations in training datasets [21, 22, 40, 47, 75]. The
reason why large transformer models may not generalize well out-of-distribution can be attributed to the
combination of two factors: on the one hand, their enormous learning capacity, and on the other, the narrow-
ness of the training set distributions of downstream tasks, which is related to how these datasets were mined
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or crowdsourced. The expressiveness of these models allows them to easily discover and exploit spurious
correlations in these datasets during fine-tuning, leading to impressive performance metrics which, however,
do not necessarily reflect their actual natural language understanding capabilities.

Brown et al. [9] suggest few-shot learning as a way to both evaluate large language models more accurately,
as well as to overcome the problem of overfitting on narrow distributions; this is because no parameter
updates take place when solving downstream tasks, and all learning happens “in-context”, exclusively based
on the provided input prompt. These properties appear as very significant advantages of few-shot capable
models, alongside the convenience of eschewing the creation of task-specific datasets, and subsequently
fine-tuning and maintaining task-specific models. For this reason, it is important to elucidate to what extent
they hold true.

6.2 Evaluating Grasp of Language Systematicity

The HANS dataset [40] allows us to evaluate to what extent language models can consistently apply rules
for inferring entailment, as opposed to relying on superficial heuristics such as vocabulary overlap or the
existence of common subsequences in both premise and hypothesis. To focus on basic language parsing, the
vocabulary is intentionally chosen to be very simple, and all words occur several times in the most common
NLI datasets such as MNLI [73]. Besides the ground truth label (“entailment” versus “non-entailment”),
each example in the dataset is annotated with respect to the one out of the 30 different grammatical/syntac-
tical constructions (called “subcases”) that it is meant to probe. More information about the HANS dataset
and charateristic examples can be found in Section A of the Appendix.

6.3 Factors Affecting In-Context Learning

Model size and amount of training In Figure 5 we show how natural language inference performance
is affected by the number of shot examples, that is, the number of solved examples presented to the model
as part of the prompt; we additionally show the effect of further autoregressive pretraining. We can first
observe that the HANS task appears to be challenging for large language models, although it would be
considered trivially easy for humans, compared to the current standard reading comprehension, reasoning
and inference benchmark datasets. In particular, the 1.5 billion parameter GPT-2 never manages to perform
significantly better than random chance (50% for a balanced binary classification task), no matter how many
shot examples it is presented with. By contrast, we find that our 530 billion parameter large model, MT-
NLG is largely capable of escaping superficial heuristics and successfully leveraging syntactical rules for
inference. Apart from model size, two important factors which clearly affect performance are the amount
of autoregressive pretraining it has undergone (i.e. the number of tokens it has encountered), as well as the
number of prompt examples (shots).

Number of Shots We found it crucial that the model is first shown a couple of examples in order to
understand how to solve the task; for most model checkpoints, the peak accuracy is achieved when the
model is shown 2 examples (2-shot). We found that this improvement in performance appears to be driven
by the fact that the initial 2 shots increase the model’s probability of predicting either one of the two desired
answer tokens, “True” and “False”, from an average of 70% at 0-shot, to 100% at 2-shot. We additionally
found that the initial two shots allow the model to calibrate a strong inherent bias in preferring either one of
the two classes at 0-shot, which likely originates from the content the model has been trained on.
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Apart from our own observations on results presented in Section 4, it has also been previously reported that
while a large number of shot examples can help in some datasets, in many cases the opposite is true [9]. Here
we observe that only the largest and most well-trained models can benefit from additional examples beyond
the first few shots. We speculate that additional shots introduce confusion to weaker models, by distracting
the self-attention mechanism from focusing on the example under evaluation, while in well-trained, high-
capacity models, self-attention can still selectively attend to the most relevant samples within the prompt, as
well as the evaluated sample.

Distribution of Shots In order to further elucidate under which circumstances a larger number of shot
examples can help, we repeated the evaluation in two different settings: in the first setting, we enforce
the examples that appears in the few-shot prompts to only come from subcases different from that of the
example being evaluated - this is the “sanitized” setup. We follow this setting for all HANS evaluations in
Figure 5 and elsewhere in the paper, unless otherwise noted. In the second setting, we did not control shot
examples by subcase, and thus, as the number of shots increases, there is an increasing chance for the model
to encounter examples from the same subcase as the example under evaluation. Indeed, we observed that
when not filtering shot examples, performance substantially increases with an increasing number of shots,
while the opposite is true when the type of shot examples is dissimilar to the example under evaluation. We
can therefore conclude that the role of shot examples is not merely to provide guidance with respect to the
format of the task. Instead, just like it is true with fine-tuning, even in the case of in-context learning, the
distribution of samples used to guide the model and the distribution of samples on which it is evaluated needs
to be matched to obtain best performance, as we observe the model performs distinctly better on samples
from the same distribution as the one it has been exposed to in the prompt. This serves as first evidence that
in-context learning does not automatically circumvent the issue of “overfitting” on narrow distributions, and
we expect this effect to hold in other NLP datasets, where the type/distribution of samples used as prompt
shots either cannot be explicitly controlled or hasn’t yet been examined. At the same time, Figure 5 seems to
imply that a larger model scale combined with more pretraining can improve the generalization capabilities
of models relying on in-context learning, as such models (the 270 billion tokens MT-NLG checkpoint, in
particular) can benefit even from prompt examples which less strictly match the distribution of evaluation
samples.

Shot Labels and Label Order Furthermore, we found additional factors which significantly affect per-
formance and are related to the composition of the set of shot examples included in the prompt, in a manner
equivalent to a conventional parameter training process. For example, the order of shot examples plays
a significant role, and we found that shot samples should be shuffled or interleaved with respect to their
class labels in order to maximize performance. Even more importantly, the composition of the set of shots
with respect to class labels, i.e. the proportion of “positive” to “negative” labels, seems to drastically af-
fect the prediction probabilities for the examples under evaluation: a small proportion of “positive” shots
results in a substantially decreased probability of predicting any samples under examination to be “positive”
(“non-entailment” in our dataset), while the probability of predicting the “positive” label for any example
under evaluation rapidly increases as the proportion of “positive” shot examples increases. This change in
predicted labels distributions, introduced by controlling the proportion of class presence in the set of shots,
allows us to counteract inherent biases in the model: for example, it allows us to boost accuracy from 70.2%
to 73% for 2-shot when only including “negatives” as shot examples. Moreover, increasing the number of
shots also profoundly changes the mean, variance and skewness of class prediction distributions, and when
combined with shifting the decision threshold, it can be used to counteract the biases of the model and
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Figure 5: Natural Language Inference accuracy on the HANS dataset, as a function of the number of shots
and the amount of training (number of tokens encountered during pretraining).

significantly improve accuracy to 78.6%.

Overcoming Inference Biases and Reliance on Heuristics Finally, we proceed to examine how well our
model can handle each of the 30 different linguistic “subcases” of interest, for example, passive voice, or
disentangling relative clauses. We present the results in Table 12 of the Appendix. Although the strong
inherent biases of the model initially cause it to be very susceptible to the vocabulary overlap, subsequence
and constituent heuristics, we were able to drastically improve the model’s performance by controlling pre-
diction distributions through increasing the number of shots and at the same time differentially shifting
distribution means by taking into account unconditional prediction probabilities. Therefore, it was eventu-
ally possible to confirm that the model can consistently “apply” (i.e., take into consideration for inference)
many of the grammatical/syntactical rules which humans regard as essential for understanding natural lan-
guage. Encouragingly, the subcases which the model had difficulty handling were mostly the same as the
ones humans (especially novice speakers) would typically find confusing (see examples in Table 11 and
Table 12).

6.4 Summary of Evaluation

We found that very large, pretrained language models can be shown to “understand” (i.e. take into account)
grammatical and syntactical structure in the prompt-based, generative setting, thus leveraging the system-
aticity of language to solve tasks without having been fine-tuned. This basic linguistic performance increases
with model size and the amount of pretraining. Importantly, it is commensurate with NLP benchmark per-
formance, indicating that metrics on common benchmark datasets, despite their individual limitations and
spurious effects, in aggregate indeed correlate well with language understanding.
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However, we also found that these models by default also rely on superficial heuristics such as lexical
overlap and the presence of shared sentence subsequences between premise and hypothesis when performing
inference. Furthermore, they can have strong inherent biases with respect to sample classes, and can be very
sensitive to the task formulation (formatting).

Importantly, we found that in-context learning appears to be following similar principles as standard learn-
ing through tuning parameters: for example, the order of shot samples matters. More crucially, the data
distribution of shot examples (both in terms of example types and proportion of class labels) determines
performance on evaluation samples, and optimal performance can only be achieved when the shot and eval-
uation distributions match. Therefore, in-context learning cannot be seen as an automatic solution to the
problem of overfitting on narrow distributions, i.e. poor out-of-distribution generalization performance.

Together, the above observations show that special effort is necessary to elicit correct responses from large
language models in the prompt-based setting, and suggest that there is still significant room for improvement
with respect to the goal of using a generic, task-agnostic generative model which can replace models fine-
tuned to solve the task.

7 Qualitative Examples for MT-NLG Generation Capabilities

As an addition to quantitative evaluation and analysis on benchmark datasets, we also qualitatively examined
the language generation capabilities on novel scenarios. To our pleasant surprise, MT-NLG is quite capable
in solving riddles, answering Jeopardy questions and even generating code off-the-shelf. We present some
examples of each category below.

Riddle Answer Generation We used riddles to probe the model’s reasoning capability in an ambiguous
context, crafting each riddle ourselves in order to prevent their incidence in the training set. We first observe
that in a riddle-solving context, the model tends to generate its interpretation of each line in the riddle
along with its answer. While not always perfect, these interpretations most of the time make good sense.
Such an example is shown in Table 13. For riddles that are ambiguous enough to have multiple plausible
answers, MT-NLG not only generates alternative plausible answers through stochastic sampling, but it can
also generate alternative interpretations matching the answer it has generated (Table 14).

Jeopardy Questions Question answering datasets [30, 25] often poses specific and direct questions to
benchmark the models. However, we are also interested in how the model can utilize the knowledge it
memorized in a guessing game setting, where some reasoning over the hints is required. To this end, we
take several Jeopardy! questions from the most recent episode and let our model generate the answers. Since
Jeopardy! questions take the reverse trivia format where the “question” is in the format of an answer and
contestants are asked to select matching questions, we choose to use few-shot setting to inform the model
of the task format. MT-NLG can generate fairly plausible answers and in fact get the correct ones in most
cases. Some examples is shown in Table 15.

Code Generation The recent development of code generation using language models suggests that large
scale pretrained LMs already show decent code generation capabilities from pretraining. To this end, we
investigate the code generation capability of MT-NLG off-the-shelf. We presented some function signatures
with detailed comments to see how MT-NLG would complete the implementation of the missing function.
We observe that MT-NLG is capable of generating syntactically correct code consistently, and is also able
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to arrive at correct implementations for simple tasks. We sometimes observe that the model will generate an
answer making use of another function, and then move on to generate the invoked function after the current
one is finished. Some examples of this are shown in Table 16.

Inferring Arithmetic Operations Understanding and using mathematical operations is yet another as-
pect of language understanding. Prior work [9] has demonstrated that a strong language model, even if not
trained specifically to solve math problems, can answer simple arithmetic questions with a certain degree of
accuracy beyond chance. However, some doubts remain as to whether the model indeed has some under-
standing of math expressions, or whether it simply rehashes examples encountered during training. To this
end, we devise a new task where we obfuscate operator symbols in an expression and check if our model
can reverse-engineer the arithmetic operation. We observe that common operations like addition, subtrac-
tion, multiplication and division can usually be inferred correctly. Some examples of this task is shown in
Table 17.

Free-form Generative Writing Assistance We qualitatively examined the free-form generation capabil-
ity of MT-NLG by enlisting the model to help authoring the abstract section of this paper. This was done
through prompting MT-NLG with the text from Section 1, then proceeding to sample the model sentence by
sentence. For each sentence multiple candidates were generated, from which one was picked and edited if
necessary. We repeated this process until the abstraction excerpt appeared complete.

8 Related Works

Improving model performance through scaling model and dataset size has witnessed great success in recent
years, especially in natural language processing. Before the currently prevailing paradigm of large-scale
pretraining, there has already been efforts in scaling up LSTM models [26] to over a billion parameters.
This trend is continued when large-scale pretraining with transformer architectures becomes popular, with
BERT [12] scaling up to 300 million parameters, followed by GPT-2 [52] at 1.5 billion parameters. Scaling
beyond this point requires more sophisticated training techniques, but the rapid development of new system
software, data, model and pipeline parallelism techniques have enabled another wave of even larger models.

Some prior works have chosen to use the mixture-of-experts (MoE) [32, 35, 61] technique to scale to larger
model sizes more economically, producing large-scale models that selectively use a subset of its parameters
in each forward pass. MoE allows for extreme scaling in terms of model sizes, with recent work reaching
1.6, 1.75 and even 10 trillion [5, 15, 36] parameters. However, the line of work that is more relevant to
MT-NLG is in the scaling of monolithic, dense transformer architectures. Prior work after GPT-2 produced
dense transformer models at 8 billion [63], 11 billion [54], and 17 billion [4] parameters, and GPT-3 [9] at
175 billion parameters demonstrated for the first time that language models at such scale begin to exhibit
zero-/few-shot learning capabilities that are missing in smaller models. Since then, several other hundred-
billion scale dense transformer models have been announced, among them are Jurassic-1 [34], Yuan 1.0 [74],
PanGu-α [78] and Gopher [53]. Our work further extends this line of work, situating ourselves at the largest
monolithic transformer language model to date at 530 billion parameters, achieving unprecedented training
efficiency and model quality.

There has also been recent work focusing on directly improving language model’s zero-shot learning ca-
pabilities through large-scale multitask finetuning. Both T0 [59] and FLAN [70] have taken this path and
have shown that such an approach can improve zero-shot learning capabilities of language models. This

27



approach has been shown to apply well to a pretrained language model [70], observing that the larger the
model size, the more benefit it extracts from such training methods. We hope that our breakthroughs in
large-scale pretraining are synergistic with these methods, and will produce even better models in the future.

9 Conclusions

In this work, we presented MT-NLG, a 530 billion parameter left-to-right, autoregressive, generative transfor-
mer-based language model that possesses strong in-context learning capabilities. MT-NLG achieved supe-
rior zero-/one- and few-shot learning performance on several NLP benchmarks, establishing new state-of-
the-art results. We discussed the challenges in training neural networks at such scale and presented our
3D-parallelism strategies as well as hardware infrastructures that enabled efficient training of MT-NLG.
Large language model training is challenging to stabilize and experimentation can be costly, therefore, we
documented our training configurations and datasets extensively to facilitate future research. Last but not
least, we analyze the social biases exhibited by MT-NLG and also examined various factors that can affect
in-context learning, bringing forth awareness of certain limitations of current generation of large language
models. We believe that our results and findings can help, shape, and facilitate future research in founda-
tional, large-scale pretraining.
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Biber, Evelyn Breiteneder, Simon Clematide, Marc Kupietz, Harald Lüngen, and Caroline Iliadi, edi-
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Subcase Heuristic Premise Hypothesis Label

Conjunctions Lexical Overlap The secretaries saw the scientists and the actors. The secretaries saw the actors. E
Subject-object swap Lexical Overlap The senators mentioned the artist. The artist mentioned the senators. N
Untangling relative clauses Lexical Overlap The athlete who the judges saw called the manager. The judges saw the athlete. E
Passives Lexical Overlap The senators were helped by the managers. The senators helped the managers. N
Understood argument Subsequence The author read the book. The author read. E
PP on subject Subsequence The senator near the lawyer danced. The lawyer danced. N
Relative clause on subject Subsequence The secretary that admired the senator saw the actor. The senator saw the actor. N
NP/S Subsequence The managers heard the secretary resigned. The managers heard the secretary. N
Embedded under verb Constituent The president remembered that the actors performed. The actors performed. E
Embedded under preposition Constituent Because the banker ran, the doctors saw the professors. The banker ran. E
Outside embedded clause Constituent Unless the authors saw the students, the doctors resigned. The doctors resigned. N
Outside embedded clause Constituent Although the secretaries slept, the judges danced. The judges danced. E

Table 11: Entailment (E) and Non-entailment (N) examples from the HANS dataset

Supplementary Materials

A Analysis Results on HANS Dataset

A.1 Structure and examples

The Heuristic Analysis for NLI Systems (HANS) [40] dataset is an NLI dataset designed to check the
reliance of models on three superficial syntactic heuristics: the lexical overlap heuristic, where premise and
hypothesis share many common words; the subsequence heuristic, where the hypothesis is a sequence of
words which exists verbatim in the premise; and the constituent heuristic, where a hypothesis is a sequence
of words which forms a constituent of the parse tree of the hypothesis (e.g. a subordinate clause with a
modifier). Constituent cases are a subset of subsequence cases, which are in turn a subset of lexical overlap
cases.

For each heuristic, 5 templates (called “subcases”) are designed to generate examples which support the
heuristic (i.e. the premise entails the hypothesis), and 5 templates which contradict it (i.e. the premise does
not entail the hypothesis), yielding 10 subcases per heuristic, and a total of 30 subcases overall. Each subcase
can be seen as testing a specific grammatical/syntactic structure of linguistic interest. The vocabulary used
to populate the templates is basic, examples are checked for plausibility using rules (e.g. nouns used as
subjects or objects should be plausible for a given verb), and verbs are guaranteed to occur multiple times in
datasets such as MNLI in their examined roles. Characteristic examples of the HANS dataset can be found
in Table 11.

Using each template, 1000 examples are generated, thus compiling a test set balanced with respect to the
two classes (“entailment” / “non-entailment”) of a total of 30000 examples; likewise, 30000 examples are
generated for the training set. In our experiments, we evaluate models on all test set examples, drawing
examples from the training set when constructing the few-shot prompts.
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A.2 Performance per subcase

For each subcase, we show the accuracy of MT-NLG pretrained on 270 billion tokens, when including 32
examples in the shot. To counteract existing class prediction biases, prediction distributions were normalized
by shifting their means.

Overall, we see evidence that the model at least partially relies on heuristics: for non-entailment, perfor-
mance is almost perfect on lexical overlap cases, which are the easiest for the model to escape (the premise-
hypothesis superficial similarity is smaller, and thus it is not as strongly inclined to infer entailment). How-
ever, the model finds it more challenging to ignore superficial similarity and infer non-entailment in case
of a verbatim presence of the hypothesis as a subsequence in the premise. Reversely, it is much easier for
the model to correctly infer entailment in case of shared subsequences, rather than in the presence of mere
lexical overlap, and thus accuracy for lexical overlap entailment subcases is lower.

Nevertheless, we also observe clear indications that the model, despite being only trained through autore-
gressive language modeling, is able to learn linguistic rules such as the role and function of passive voice,
of the order of subject and object, of relative clauses, or of verbs that can be either transitive or intransitive,
and it systematically takes into account the respective syntactic structures for inference, successfully escap-
ing misleading superficial textual similarity. In terms of “understanding” the nuance of vocabulary, besides
straight-forward cases, such as that “Without a doubt the managers advised the lawyers” entails that “The
managers advised the lawyers”, while the adverbs “supposedly” or “probably” reduce certainty, it is also
capable of distinguishing the difference that the verb makes with respect to the veracity of the hypothesis,
in cases such as: “The professors claimed / thought that the scientist advised the tourist → The scientist
advised the tourist”, as opposed to “The professors forgot / knew that the scientist advised the tourist”.

The cases which proved most problematic for the model are often also confusing to humans, for example
garden path sentences with temporary ambiguity [16] such as: “The professors heard the artist performed→
The professors heard the artist”, or past participle constructions in which relative pronouns are omitted, e.g.
“The banker paid in the museum believed the artists→ The banker paid in the museum”, where “who was”
is omitted before “paid”. However, contrary to expectations, the model could only less than half of the time
successfully parse conjunctions to infer entailment, e.g. “The secretary and the lawyers called the president
→ The secretary called the president”, or “The artist admired the professors and the manager→ The artist
admired the manager”. This surprising finding shows that our human intuition regarding what constitutes
an easy or challenging task for a language model, and by extension, what kind of behaviors reveal mastery
of natural language understanding, may be limited. Based on our findings about reliance on heuristics,
inherent inference biases, as well as other factors influencing “in-context learning”, we believe that the field
of evaluating “natural language understanding” in generative language models, and further elucidating how
it differs from the human equivalent, will be an exciting area of future research.

B Qualitative Examples of MT-NLG Text Generation

The section below contains examples generated by MT-NLG in various contexts. Compared to benchmark
evaluations, the scenarios below focuses more on open-ended, creative or logical generation tasks. We show
these as qualitative examples.

36



Subcase Heuristic Class Accuracy

Conjunction Lexical Overlap N 0.993
Preposition Lexical Overlap N 0.985
Adjective Subsequence E 0.981

Relative clause Lexical Overlap N 0.977
Subject/object swap Lexical Overlap N 0.975

Passive Lexical Overlap N 0.947
Adverb Constituent E 0.928

Understood object Subsequence E 0.921
PP on object Subsequence E 0.910

Relative clause on object Subsequence E 0.841
Embedded under verb Constituent E 0.819

Embedded under if Constituent N 0.806
Relative clause on subject Subsequence N 0.798

Embedded under verb Constituent N 0.795
Embedded under since Constituent E 0.788

NP/Z Subsequence N 0.769
Passive Lexical Overlap E 0.746

PP on subject Subsequence N 0.745
Conjunction Constituent E 0.724

Around relative clause Lexical Overlap E 0.710
Adverb Constituent N 0.702

Around prepositional phrase Lexical Overlap E 0.697
After if clause Constituent N 0.651
Relative clause Lexical Overlap E 0.582

Disjunction Constituent N 0.559
After since clause Constituent E 0.548

Conjunction Subsequence E 0.546
Past participle Subsequence N 0.471
Conjunction Lexical Overlap E 0.456

NP/S Subsequence N 0.262

Table 12: Accuracy of MT-NLG (trained on 270 billion tokens, using 32-shot prompts) per HANS subcase
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Context→ Here is the riddle:

Sometimes it flows like peanut butter

Other times it’s hard as a rock

It has bones made out of metal

But not a single joint

As inanimate as it is

It can also take many shapes

As strong as it is

It can be defeated by table salt

The correct answer is

Model Answer→ Concrete

Sometimes it flows like peanut butter

Concrete can be poured and will flow like a liquid.

Other times it’s hard as a rock

Concrete can also be used to create solid structures.

It has bones made out of metal

Reinforcing steel bars can be used to strengthen concrete.

But not a single joint

Concrete doesn’t have any joints.

As inanimate as it is

Concrete is not alive.

It can also take many shapes

Concrete can be moulded into any shape.

As strong as it is

Concrete is very strong.

It can be defeated by table salt

Concrete can be dissolved by salt water.

Table 13: Samples from MT-NLG for solving riddles. MT-NLG has a strong tendency to generate interpre-
tations of the riddles after giving the answer.
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Context→ Here is a riddle:

All of us have one, but few get to choose

If you don’t know mine, you are not my friend

When it is called, our attention is drawn

Even if we are gone, they are still around

I think the answer is

Model Answer 1→ Name

All of us have one, but few get to choose

Everyone has a name, but few get to choose what their name is.

If you don’t know mine, you are not my friend

If you don’t know someone’s name, you can’t be friends with them.

When it is called, our attention is drawn

If someone calls your name, you will pay attention to them.

Even if we are gone, they are still around

If you are gone, your name will still be around.

Model Answer 2→ A phone number

All of us have one, but few get to choose

Everyone has a phone number, but you don’t choose it

If you don’t know mine, you are not my friend

You can’t be friends without knowing each other’s phone numbers

When it is called, our attention is drawn

When you get a phone call, you are drawn to the phone

Even if we are gone, they are still around

Phone numbers are still around even when we aren’t there

Table 14: Samples from MT-NLG for answering riddles with alternative answers. MT-NLG generates
different interpretations of the same riddle based on the answer it gave.
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Few-shot Context → Here are some questions from "Jeopardy!":

Question: At the heart of a major industrial region, this 2nd-most populous U.K. city

lies near the geographic center of England.

Answer: What is Birmingham?

Question: "You inconsiderate jade" is one of the nicer things said to Polly in this

1728 "opera" that inspired the 20th Century "Threepenny Opera."

Answer: What is "The Beggar’s Opera"?

Question: You "gotta" do this slang term to mean you’re leaving; it’s also good to

get one in the polls.

Answer: What is bounce?

Question: One way to judge guilt was "trial by" this six-letter word, like putting

the accused’s arm in boiling water.

Answer: What is ordeal?

Question: If you know the correct procedure, you "know" this, also a tool.

Answer: What is the drill?

Question: In a song from Chicago, we’re told to "give’em the old" this title,

"give’em an act with lots of flash in it."

Answer: What is razzle dazzle?

Question: Paul Michael Glaser & David Soul

Answer: Who are Starsky & Hutch?

Question: One theory about Van Gogh’s odd behavior is poisoning from this liqueur

made from wormwood.

Answer: What is absinthe?

Question: "We asked you to speak about women and fiction--what has that got to do

with a room of one’s own?"

Answer: Who is Virginia Woolf?

Question: A rival & nemesis: MY ALOOF CARD

Answer: Who is Draco Malfoy?

Question: This controversial head coach led Indiana to 3 NCAA hoops titles & the U.S.

to a gold medal in 1984.

Answer: Who is Bobby Knight?

Question: The science of determining a tree’s age by looking at its growth rings.

Answer: What is dendrochronology?

Question: 1989 film in which Keanu Reeves tells Alex Winter, "Strange things are

afoot at the Circle K."

Answer: What is Bill & Ted’s Excellent Adventure?

Question: The 3 most basic types of clouds are stratus, cumulus, and this high, wispy

type with a name meaning "curl."

Answer: What is cirrus?

Question: This singer was homeless for the year before her big break, winning an

amateur contest at The Apollo Theater in 1934.

Answer: Who is Ella Fitzgerald?

Question: This castle famous for its "stone" was built by Cormac MacCarthy about

1446.

Answer: What is the Blarney?

Question 1 → Question: Including Okaloosa & Escambia there are 16 counties in the Florida region

with this shapely name

Answer:

Model Answer 1 → What is the Panhandle?

Question 2 → Question: The word means bearskin but these Viking warriors were said to fight almost

naked in a bloodthirsty fury

Answer:

Model Answer 2 → Who are Berserkers?

Question 3 → Question: Ooh I wanna take ya but the Beach Boys completely made up this triple-rhyme

title island from a 1988 song

Answer:

Model Answer 3 → What is Kokomo?

Table 15: Samples from MT-NLG for answering Jeopardy! reverse trivia questions. Few-shot context is
prepended to each question.
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Context→

def update_dict(orig, update):

"""Deep update of a dictionary

For each entry (k, v) in update such that both orig[k] and v are

dictionaries, orig[k] is recursively updated to v.

For all other entries (k, v), orig[k] is set to v.

"""

Model Output→

for k, v in update.items():

if isinstance(orig[k], dict) and isinstance(v, dict):

update_dict(orig[k], v)

else:

orig[k] = v

Context→

def find_3_or_7_divisible_fibs(n):

"""Find all the Fibonacci numbers below n that are divisible by 3 or divisible by

7.

"""

Model Output→

return [f for f in find_fibs(n) if f % 3 == 0 or f % 7 == 0]

def find_fibs(n):

"""Find all Fibonacci numbers below n.

"""

a, b = 0, 1

while a < n:

yield a

a, b = b, a + b

Table 16: Samples from MT-NLG for code generation.
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Sample 1 Sample 2

Prompt: Prompt:
Q: 11 # 2 = ? Q: 11 $̂% 2 = ?
A: 5.5 A: 22
Q: 18 # 9 = ? Q: 3 $̂% 9 = ?
A: 2 A: 27
Q: 35 # 4 = ? Q: 12 $̂% 4 = ?
A: 8.75 A: 48
Q: 27 # 9 = ? Q: 7 $̂% 7 = ?
A: 3 A: 49
Q: 75 # 6 = ? Q: 8 $̂% 5 = ?
A: A:

MT-NLG: MT-NLG:
12.5 40
Q: 45 # 5 = ? Q: 9 $̂% 6 = ?
A: 9 A: 54
Q: 18 # 6 = ? Q: 10 $̂% 5 = ?
A: 3 A: 50

Table 17: Samples from MT-NLG on inferring mathematical operations.
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accountant acquaintance actor actress
adjunct professor administrator adventurer advocate
aide alderman alter ego ambassador
analyst anthropologist archaeologist archbishop
architect artist artiste assassin
assistant professor associate dean associate professor astronaut
astronomer athlete athletic director attorney
author baker ballerina ballplayer
banker barber baron barrister
bartender biologist bishop bodyguard
bookkeeper boss boxer broadcaster
broker bureaucrat businessman businesswoman
butcher butler cab driver cabbie
cameraman campaigner captain cardiologist
caretaker carpenter cartoonist cellist
chancellor chaplain character chef
chemist chair choreographer cinematographer
citizen civil servant cleric clerk
coach collector colonel columnist
comedian comic commander commentator
commissioner composer conductor confesses
congressman constable consultant cop
correspondent councilman councilor counselor
critic crooner crusader curator
custodian dad dancer dean
dentist deputy dermatologist detective
diplomat director disc jockey doctor
doctoral student drug addict drummer economics professor
economist editor educator electrician
employee entertainer entrepreneur environmentalist
envoy epidemiologist evangelist executive
farmer fashion designer fighter pilot filmmaker
financier firebrand firefighter fireman
fisherman footballer foreman freelance writer
gangster gardener geologist goalkeeper
graphic designer guidance counselor guitarist hairdresser
handyman headmaster historian hitman
homemaker hooker housekeeper housewife
illustrator industrialist infielder inspector
instructor interior designer inventor investigator
investment banker janitor jeweler journalist
judge jurist laborer landlord
lawmaker lawyer lecturer legislator
librarian lieutenant lifeguard lyricist
maestro magician magistrate maid
major leaguer manager marksman marshal
mathematician mechanic mediator medic
midfielder minister missionary mobster
monk musician nanny narrator
naturalist negotiator neurologist neurosurgeon
novelist nun nurse observer
officer organist painter paralegal

Table 18: List of occupation lexicons used for association test of gender and profession

43



parishioner parliamentarian pastor pathologist
patrolman pediatrician performer pharmacist
philanthropist philosopher photographer photojournalist
physician physicist pianist planner
plastic surgeon playwright plumber poet
policeman politician pollster preacher
president priest principal prisoner
professor professor emeritus programmer promoter
proprietor prosecutor protagonist protege
protester provost psychiatrist psychologist
publicist pundit rabbi radiologist
ranger realtor receptionist registered nurse
researcher restaurateur sailor saint
salesman saxophonist scholar scientist
screenwriter sculptor secretary senator
sergeant servant serviceman sheriff deputy
shopkeeper singer songwriter skipper
socialite sociologist soft spoken soldier
solicitor solicitor general soloist sportsman
sportswriter statesman steward stockbroker
strategist student stylist substitute
superintendent supervisor surgeon surveyor
swimmer taxi driver teacher technician
teenager therapist trader treasurer
trooper trucker trumpeter tutor
tycoon undersecretary understudy valedictorian
vice chancellor violinist vocalist waiter
waitress warden warrior welder
worker wrestler writer

Table 19: List of occupation lexicons used for association test of gender and profession
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