
A Transformer-based Framework for Multivariate Time Series
Representation Learning

George Zerveas
george_zerveas@brown.edu

Brown University
Providence, Rhode Island, USA

Srideepika Jayaraman
j.srideepika@ibm.com

IBM Research
Yorktown Heights, New York, USA

Dhaval Patel
pateldha@us.ibm.com

IBM Research
Yorktown Heights, New York, USA

Anuradha Bhamidipaty
anubham@us.ibm.com

IBM Research
Yorktown Heights, New York, USA

Carsten Eickhoff
carsten@brown.edu
Brown University

Providence, Rhode Island, USA

ABSTRACT
We present a novel framework for multivariate time series represen-
tation learning based on the transformer encoder architecture. The
framework includes an unsupervised pre-training scheme, which
can offer substantial performance benefits over fully supervised
learning on downstream tasks, both with but even without lever-
aging additional unlabeled data, i.e., by reusing the existing data
samples. Evaluating our framework on several public multivariate
time series datasets from various domains and with diverse charac-
teristics, we demonstrate that it performs significantly better than
the best currently available methods for regression and classifica-
tion, even for datasets which consist of only a few hundred training
samples. Given the pronounced interest in unsupervised learning
for nearly all domains in the sciences and in industry, these findings
represent an important landmark, presenting the first unsupervised
method shown to push the limits of state-of-the-art performance
for multivariate time series regression and classification.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning; Su-
pervised learning; Neural networks.

KEYWORDS
transformer; deep learning; multivariate time series; unsupervised
learning; self-supervised learning; framework; regression; classifi-
cation; imputation
ACM Reference Format:
George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidi-
paty, and Carsten Eickhoff. 2021. A Transformer-based Framework for
Multivariate Time Series Representation Learning. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3447548.3467401

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467401

1 INTRODUCTION
Multivariate time series (MTS) are an important type of data that is
ubiquitous in awide variety of domains, including science, medicine,
finance, engineering and industrial applications. They typically
represent the evolution of a group of synchronous variables (e.g.,
simultaneous measurements of different physical quantities) over
time, but they can more generally represent a group of dependent
variables (abscissas) aligned with respect to a common independent
variable, e.g., absorption spectra collected under different conditions
as a function of light frequency. Despite the recent abundance of
MTS data in the much touted era of “Big Data”, the availability of
labeled data in particular is far more limited: extensive data labeling
is often prohibitively expensive or impractical, as it may require
much time and effort, special infrastructure or domain expertise.
For this reason, in all aforementioned domains there is great interest
in methods which can offer high accuracy by using only a limited
amount of labeled data or by leveraging the existing plethora of
unlabeled data.

There is a large variety of modeling approaches for univariate
and multivariate time series, with deep learning models recently
challenging and at times pushing the state of the art in tasks such
as forecasting, regression and classification [7, 11, 30]. However,
unlike in domains such as Computer Vision or Natural Language
Processing (NLP), the dominance of deep learning for time series
is far from established: in fact, non-deep learning methods such
as TS-CHIEF [29], HIVE-COTE [21], and ROCKET [8] currently
hold the record on time series regression and classification dataset
benchmarks [2, 30], matching or even outperforming sophisticated
deep architectures such as InceptionTime [12] and ResNet [11].

In this work, we investigate, for the first time, the use of a trans-
former encoder for unsupervised representation learning of multi-
variate time series, as well as for the tasks of time series regression
and classification. Transformers are an important, recently devel-
oped class of deep learning models, which were first proposed
for the task of natural language translation [32] but have since
come to monopolize the state-of-the-art performance across vir-
tually all NLP tasks [27]. A key factor for the widespread success
of transformers in NLP is their aptitude for learning how to repre-
sent natural language through unsupervised pre-training [5, 10, 27].
Besides NLP, transformers have also set the state of the art in sev-
eral domains of sequence generation, such as polyphonic music
composition [15].

https://doi.org/10.1145/3447548.3467401
https://doi.org/10.1145/3447548.3467401

Transformer models are based on a multi-headed attention mech-
anism that renders them particularly suitable for time series data:
they concurrently represent each input sequence element by consid-
ering its context (future-past), while multiple attention heads can
consider different representation subspaces, i.e., multiple aspects of
relevance between input elements - for time series, this for example
may correspond to multiple periodicities in the signal.

Inspired by the impressive results attained through unsupervised
pre-training of transformer models in NLP, as our main contribu-
tion, in the present work we develop a generally applicable method-
ology (framework) that can leverage unlabeled data by first training
a transformer encoder to extract dense vector representations of
multivariate time series through an input “denoising” (autoregres-
sive) objective. The pre-trained model can be subsequently applied
to several downstream tasks, such as regression, classification, im-
putation, and forecasting. Here, we apply our framework for the
tasks of multivariate time series regression and classification on sev-
eral public datasets and demonstrate that our transformer models
can convincingly outperform all current state-of-the-art modeling
approaches, even when only having access to a very limited amount
of training data samples (on the order of hundreds of samples), an
unprecedented success for deep learning models. To the best of our
knowledge, this is also the first time that unsupervised learning has
been shown to confer an advantage over supervised learning for
classification and regression of multivariate time series, even with-
out utilizing additional unlabeled data samples. Importantly, despite
common preconceptions about transformers from the domain of
NLP, where top performing models have billions of parameters and
require days to weeks of pre-training on a massive amount of data
using many parallel GPUs or TPUs, we also demonstrate that our
models, using at most hundreds of thousands of parameters, can
be efficiently trained: a commodity GPU allows them to be trained
approximately as fast as lean non-deep learning based approaches1.

2 RELATEDWORK
Regression and classification of time series: Currently, non-
deep learning methods such as TS-CHIEF [29], HIVE-COTE [21],
and ROCKET [8, 9] constitute the state of the art for time series
regression and classification based on evaluations on public bench-
marks [2, 30], followed by CNN-based deep architectures such as
InceptionTime [12] and ResNet [11]. ROCKET, which on average
is the best ranking method, involves training a linear classifier on
top of features extracted by a flat collection of numerous and vari-
ous random convolutional kernels. A concurrent work to our own,
MiniROCKET [9], is a variant of ROCKET which improves process-
ing time, while offering essentially the same accuracy. HIVE-COTE
and TS-CHIEF (itself inspired by Proximity Forest [23]), are very
sophisticated methods which incorporate expert insights on time
series data and consist of large, heterogeneous ensembles of classi-
fiers utilizing shapelet transformations, elastic similarity measures,
spectral features, random interval and dictionary-based techniques;
however, these methods are highly complex, involve significant
computational cost, cannot benefit from GPU hardware and scale

1We share our code base of the entire end-to-end pipeline at: https://github.com/
gzerveas/mvts_transformer

poorly to datasets with many samples and long time series; more-
over, they have been developed for and only been evaluated on
univariate time series.

Unsupervised learning formultivariate time series: Recent
work on unsupervised learning for multivariate time series has
predominantly employed autoencoders, trained with an input re-
construction objective and implemented either as Multi-Layer Per-
ceptrons (e.g. focusing on clustering and the visualization of shift-
ing sample topology with time [13, 17]) or RNN (most commonly,
LSTM) sequence-to-sequence networks [24, 26].

As a novel take on autoencoding, and with the goal of dealing
with missing data, Bianchi et al. [4] employ a stacked bidirectional
RNN encoder and stacked RNN decoder to reconstruct the input,
and at the same time use a user-provided kernel matrix as prior
information to condition internal representations and encourage
learning similarity-preserving representations of the input. For
the purpose of time series clustering, Lei et al. [18] also follow a
method which aims at preserving similarity between time series by
directing learned representations to approximate a distance such
as Dynamic Time Warping (DTW) between time series through a
matrix factorization algorithm.

A distinct approach is followed by Zhang et al. [34], who use
a composite convolutional - LSTM network with attention and a
loss which aims at reconstructing correlation matrices between
the variables of the multivariate time series input. They use and
evaluate their method only for the task of anomaly detection.

Finally, Jansen et al. [16] rely on a triplet loss and the idea of
temporal proximity (the loss rewards similarity of representations
between proximal segments and penalizes similarity between dis-
tal segments of the time series) for unsupervised representation
learning of non-speech audio data. This idea is explored further
by Franceschi et al. [14], who combine the triplet loss with a deep
causal CNN with dilation, in order to make the method effective
for very long time series. Although on the task of univariate classi-
fication the method is outperformed by supervised state-of-the-art
methods, prior to our method it was the best performing method
leveraging unsupervised learning for univariate and multivariate
classification datasets of the UEA/UCR archive [2].

Transformermodels for time series: Recently, a full encoder-
decoder transformer architecture was employed for univariate time
series forecasting: Li et al. [19] showed superior performance com-
pared to the classical statistical method ARIMA, the recent matrix
factorization method TRMF, an RNN-based autoregressive model
(DeepAR) and an RNN-based state space model (DeepState) on
4 public forecasting datasets, while Wu et al. [33] used a trans-
former for forecasting influenza prevalence and similarly showed
performance benefits compared to ARIMA, an LSTM and a GRU
Seq2Seq model with attention; Lim et al. [20] used a transformer
for multi-horizon univariate forecasting, supporting interpretation
of temporal dynamics. Finally, [25] use an encoder-decoder archi-
tecture with a variant of self-attention for imputation of missing
values in multivariate, geo-tagged time series and outperform clas-
sic as well as the state-of-the-art, RNN-based imputation methods
on 3 public and 2 competition datasets for imputation.

By contrast, our work aspires to generalize the use of transform-
ers from solutions to specific generative tasks (which require the full
encoder-decoder architecture) to a broader frameworkwhich allows

https://github.com/gzerveas/mvts_transformer
https://github.com/gzerveas/mvts_transformer

for unsupervised pre-training and can be readily used for a wide
variety of downstream tasks by modifying the output layer; this is
analogous to the way BERT [10] converted a language translation
model into a generic framework based on unsupervised learning,
an approach which has become a de facto standard and established
the dominance of transformers in NLP.

3 METHODOLOGY
3.1 Base model
At the core of our method lies a transformer encoder, as described in
the original transformer work by Vaswani et al. [32], but we do not
use the decoder part of the architecture. The reason for this design
choice is that the decoder module is suitable for generative tasks,
especially in case of no pre-specified output sequence length; such
is the case for translation and summarization in NLP, or forecasting
in time series. However, the decoder module needs the (masked)
“ground truth” output sequence as an input, and is thus unsuitable
for tasks such as classification or (extrinsic) regression. By contrast,
the goal of this work is to develop a unified framework for a multi-
tude of tasks. An architecture which consists of an encoder only
is versatile: it can handle tasks such as classification, regression,
imputation, but also generative tasks such as forecasting. At the
same time, using only an encoder allows us to use about half the
model parameters, which results in computational and learning
benefits (e.g., avoiding overfitting). A schematic diagram of the
generic part of our model, common across all considered tasks, is
shown in Figure 1. We refer the reader to the original work for a
detailed description of the transformer model, and here present the
proposed changes that make it compatible with multivariate time
series data, instead of sequences of discrete word indices.

In particular, each training sample X ∈ R𝑤×𝑚 , which is a mul-
tivariate time series of length 𝑤 and 𝑚 different variables, con-
stitutes a sequence of 𝑤 feature vectors xt ∈ R𝑚 : X ∈ R𝑤×𝑚 =

[x1, x2, . . . , xw]. The original feature vectors xt are first normalized
(for each dimension, we subtract the mean and divide by the vari-
ance across the training set samples) and then linearly projected
onto a 𝑑-dimensional vector space, where 𝑑 is the dimension of
the transformer model sequence element representations (typically
called model dimension):

ut = Wpxt + bp (1)

where Wp ∈ R𝑑×𝑚 , bp ∈ R𝑑 are learnable parameters and ut ∈
R𝑑 , 𝑡 = 0, . . . ,𝑤 are the model input vectors2, which correspond to
the word vectors of the NLP transformer. These will become the
queries, keys and values of the self-attention layer, after adding
the positional encodings and multiplying by the corresponding
matrices.

We note that the above formulation also covers the univariate
time series case, i.e.,𝑚 = 1, although we only evaluate our approach
onmultivariate time series in the scope of this work.We additionally
note that the input vectors ut need not necessarily be obtained
from the (transformed) feature vectors at a time step 𝑡 : because
the computational complexity of the model scales as 𝑂 (𝑤2) and

2Although (1) shows the operation for a single time step for clarity, all input vectors
are embedded concurrently by a single matrix-matrix multiplication

the number of some parameters3 as 𝑂 (𝑤) with the input sequence
length𝑤 , to obtain ut in case the granularity (temporal resolution)
of the data is very fine, one may instead use a 1D-convolutional
layer with 1 input and 𝑑 output channels and kernels 𝐾𝑖 of size
(𝑘,𝑚), where 𝑘 is the width in number of time steps and 𝑖 the output
channel:

𝑢𝑡
𝑖 = 𝑢 (𝑡, 𝑖) =

∑
𝑗

∑
ℎ

𝑥 (𝑡 + 𝑗, ℎ)𝐾𝑖 (𝑗, ℎ), 𝑖 = 1, . . . , 𝑑 (2)

In this way, one may control the temporal resolution by using
a stride or dilation factor greater than 1. Moreover, although in
the present work we only used (1), one may use (2) as an input
to compute the keys and queries and (1) to compute the values
of the self-attention layer. This is particularly useful in the case
of univariate time series, where self-attention would otherwise
match (consider relevant/compatible) all time steps which share
similar values for the independent variable, as noted by Li et al.
[19]. Although we observe improved performance when using a
1D-convolutional layer for certain datasets consisting of longer
and lower-dimensional time series, in the present work we forego
these results, in the interest of proposing a single architectural
framework.

Finally, since the transformer is a feed-forward architecture that
is insensitive to the ordering of input, in order to make it aware of
the sequential nature of the time series, we add positional encodings
𝑊pos ∈ R𝑤×𝑑 to the input vectors 𝑈 ∈ R𝑤×𝑑 = [u1, . . . , uw]:
𝑈 ′ = 𝑈 +𝑊pos.

Instead of deterministic, sinusoidal encodings, which were origi-
nally proposed by [32], we use fully learnable positional encodings,
as we observed that they perform better for all datasets presented in
this work. Based on the performance of our models, we also observe
that the positional encodings generally appear not to significantly
interfere with the numerical information of the time series, sim-
ilar to the case of word embeddings; we hypothesize that this is
because they are learned so as to occupy a different, approximately
orthogonal, subspace to the one in which the projected time series
samples reside. This approximate orthogonality condition is much
easier to satisfy in high dimensional spaces.

An important consideration regarding time series data is that
individual samples may display considerable variation in length.
This issue is effectively dealt with in our framework: after setting a
maximum sequence length𝑤 for the entire dataset, shorter samples
are padded with arbitrary values, and we generate a padding mask
which adds a large negative value to the attention scores for the
padded positions, before computing the self-attention distribution
with the softmax function. This forces the model to completely
ignore padded positions, while allowing the parallel processing of
samples in large minibatches.

Transformers in NLP use layer normalization after computing
self-attention and after the feed-forward part of each encoder block,
leading to significant performance gains over batch normalization,
as originally proposed by [32]. However, here we instead use batch
normalization, which can mitigate the effect of outlier values in
time series, an issue that does not arise in NLP word embeddings.
Additionally, the inferior performance of batch normalization in
3Specifically: learnable positional encoding, batch normalization and output layer

Positional Encoding+

. . .

. . .

Input encoding

𝒙1 𝒙2 𝒙𝑤

. . .

𝒖1 𝒖2 𝒖𝑤

𝒛1 𝒛𝑤

𝒛𝒕 ∈ ℝ
𝑑: representation at t

. . .

. . .

t1 t2
tw

x1

x2

xm

ෝ𝒙1

෥𝒙2 ෥𝒙w

Input encoding

ෝ𝒙2

Transformer Encoder

𝒙𝑡∈ ℝ
𝑚

𝒖𝑡 ∈ ℝ
𝑑

× 𝐵

𝒛1 𝒛𝑤

Transformer Encoder𝒛2

𝒛2

෥𝒙1

ෝ𝒙𝑤

ෝ𝒙𝑡∈ ℝ
𝑚: model estimate

෥𝒙𝑡∈ ℝ
𝑚: masked input

Figure 1: Left: Generic model architecture, common to all tasks. The feature vector xt at each time step 𝑡 is linearly projected to
a vector ut of the same dimensionality 𝑑 as the internal representation vectors of themodel and is fed to the first self-attention
layer to form the keys, queries and values after adding a positional encoding. Right: Training setup of the unsupervised pre-
training task. We mask a proportion 𝑟 of each variable sequence in the input independently, such that across each variable,
time segments of mean length 𝑙𝑚 are masked, each followed by an unmasked segment of mean length 𝑙𝑢 = 1−𝑟

𝑟 𝑙𝑚 . Using a
linear layer on top of the final vector representations zt, at each time step the model tries to predict the full, uncorrupted
input vectors xt; however, only the predictions on the masked values are considered in the Mean Squared Error loss.

NLP has been mainly attributed to extreme variation in sample
length (i.e., sentence length in most applications) [28], while in
the datasets we examine here, this variation is much smaller. In
Table 1 we demonstrate that batch normalization can indeed offer
a significant performance benefit over layer normalization, while
the extent can vary depending on dataset characteristics.

3.2 Regression and classification
The base model architecture presented in Section 3.1 and depicted
in Figure 1 can be used for the purposes of regression and classi-
fication with the following modification: the final representation
vectors zt ∈ R𝑑 corresponding to all time steps are concatenated
into a single vector z̄ ∈ R𝑑 ·𝑤 = [z1; . . . ; zw], which serves as the
input to a linear output layer with parameters Wo ∈ R𝑛×(𝑑 ·𝑤) ,
bo ∈ R𝑛 , where 𝑛 is the number of scalars to be estimated for the
regression problem (typically 𝑛 = 1), or the number of classes for
the classification problem:

ŷ = Woz̄ + bo (3)

In the case of regression, the loss for a single data sample will
simply be the squared error L = ∥ŷ − y∥2, where y ∈ R𝑛 are the
ground truth values. We clarify that regression in the context of this
work means predicting a global numeric value for a given sequence
(time series sample). This global value is of a different nature than
the variables appearing in the time series: for example, given a se-
quence of simultaneous temperature and humidity measurements
of 9 rooms in a house, as well as weather and climate data such

as temperature, pressure, humidity, wind speed, visibility and dew
point, as a global value we wish to predict the total energy consump-
tion in kWh of a house for that day. The parameter 𝑛 corresponds
to the number of scalar global values (or the dimensionality of a
vector) to be estimated.

In the case of classification, the predictions ŷ will additionally
be passed through a softmax function to obtain a distribution over
classes, and its cross-entropy with the categorical ground truth
labels will be the sample loss.

Finally, when fine-tuning the pre-trained models, we allow train-
ing of all weights; instead, freezing all layers except for the output
layer would be equivalent to using static, pre-extracted representa-
tions of the time series. In Table 2 we show the trade-off in terms of
speed and performance when using a fully trainable model versus
static representations.

3.3 Unsupervised (self-supervised) pre-training
As a task for the unsupervised4 pre-training of our model we con-
sider the autoregressive task of denoising the input: specifically, we
set part of the input to 0 and ask the model to predict the masked
values. The corresponding setup is depicted in the right part of
Figure 1. A binary noise maskM ∈ R𝑤×𝑚 , is created independently
for each training sample and epoch, and the input is masked by

4Following the convention in related literature (e.g. [14]), we use the terms "unsuper-
vised" and "self-suprvised" interchangeably, to denote forgoing annotation or labels.

elementwise multiplication: X̃ = M ⊙ X. On average, a propor-
tion 𝑟 of each mask column of length𝑤 (corresponding to a single
variable in the multivariate time series) is set to 0 by alternating
between segments of 0s and 1s. We choose the state transition
probabilities such that each masked segment (sequence of 0s) has a
length that follows a geometric distribution with mean 𝑙𝑚 and is
succeeded by an unmasked segment (sequence of 1s) of mean length
𝑙𝑢 = 1−𝑟

𝑟 𝑙𝑚 . We chose 𝑙𝑚 = 3 for all presented experiments. The
reason why we wish to control the length of the masked sequence,
instead of simply using a Bernoulli distribution with parameter
𝑟 to set all mask elements independently at random, is that very
short masked sequences (e.g., of 1 masked element) in the input can
often be trivially predicted with good approximation by replicating
the immediately preceding or succeeding values or by the average
thereof. In order to obtain enough long masked sequences with
relatively high likelihood, a very high masking proportion 𝑟 would
be required, which would render the overall task detrimentally
challenging. Following the process above, at each time step on av-
erage 𝑟 ·𝑚 variables will be masked. We empirically found 𝑟 = 0.15
to work well and use it for all presented experiments. This input
masking process is different from the “cloze type” masking used by
NLP models such as BERT, where a special token and thus word
embedding vector replaces the original word embedding, i.e., the
entire feature vector at affected time steps. We chose this masking
pattern because it encourages the model to learn to attend both
to preceding and succeeding segments in individual variables, as
well as to existing contemporary values of the other variables in
the time series, and thereby to learn to model inter-dependencies
between variables. In Table 3 we show that this masking scheme is
more effective than other possibilities for denoising the input.

Using a linear layer with parameters Wo ∈ R𝑚×𝑑 , bo ∈ R𝑚
on top of the final vector representations zt ∈ R𝑑 , for each time
step the model concurrently outputs its estimate x̂t of the full,
uncorrupted input vectors xt; however, only the predictions on
the masked values (with indices in the set 𝑀 ≡ {(𝑡, 𝑖) : 𝑚𝑡,𝑖 = 0},
where𝑚𝑡,𝑖 are the elements of the mask M), are considered in the
Mean Squared Error loss for each data sample:

x̂t = Wozt + bo (4)

LMSE =
1
|𝑀 |

∑∑
(𝑡,𝑖) ∈𝑀

(𝑥 (𝑡, 𝑖) − 𝑥 (𝑡, 𝑖))2 (5)

This objective differs from the one used by denoising autoen-
coders, where the loss considers reconstruction of the entire input,
under (typically Gaussian) noise corruption. Also, we note that the
approach described above differs from simple dropout on the input
embeddings, both with respect to the statistical distributions of
masked values, as well as the fact that here the masks also deter-
mine the loss function. In fact, we additionally use a dropout of 10%
when training all of our supervised and unsupervised models.

4 EXPERIMENTS & RESULTS
In the experiments reported below we use the predefined training -
test set splits of all benchmark datasets and train models and base-
lines long enough to ensure convergence. We do this to account for
the fact that training transformer models in a fully supervised way

Dataset Task (Metric) LayerNorm BatchNorm
Heartbeat Class. (Acc.) 0.741 0.776

InsectWingbeat Class. (Acc.) 0.658 0.684
Sp.Arab.Digits Class. (Acc.) 0.993 0.993

PEMS-SF Class. (Acc.) 0.832 0.919
Benz.Concentr. Regr. (RMSE) 2.053 0.516
BeijingPM25 Regr. (RMSE) 61.082 60.357
L.FuelMoisture Regr. (RMSE) 42.993 42.607

Table 1: Performance comparison between using layer nor-
malization and batch normalization in our supervised trans-
former model. The batch size is 128.

Dataset Task (Metric) Static Fine-tuned
Metric Time (s) Metric Time (s)

Heartbeat Class. (Acc.) 0.756 0.082 0.776 0.14
InsectWingbeat Class. (Acc.) 0.236 4.52 0.687 6.21
Sp.Arab.Digits Class. (Acc.) 0.996 1.29 0.998 2.00

PEMS-SF Class. (Acc.) 0.844 0.208 0.896 0.281
Benz.Concentr. Regr. (RMSE) 4.684 0.697 0.494 1.101
BeijingPM25 Regr. (RMSE) 65.608 1.91 53.492 2.68
L.FuelMoisture Regr. (RMSE) 48.724 1.696 43.138 3.57
Table 2: Performance comparison between allowing all lay-
ers of a pre-trained transformer to be fine-tuned, versus us-
ing static (“extracted”) representations of the time series as
input to the output layer (which is equivalent to freezing
all model layers except for the output layer). The per-epoch
training time on a GPU is also shown.

typically requires more epochs than fine-tuning ones which have
already been pre-trained using the unsupervised methodology of
Section 3.3. Since our benchmark datasets are highly heterogeneous
in terms of number of samples, dimensionality and length of the
time series, as well as the physical nature of the data itself, we ob-
served that we can obtain better performance by a cursory tuning
of hyperparameters (such as the number of encoder blocks, the
representation dimension, number of attention heads or dimension
of the feed-forward part of the encoder blocks) separately for each
dataset. To select hyperparameters, for each dataset we randomly
split the training set in two parts, 80%-20%, and used the 20% as
a validation set for hyperparameter tuning. After fixing the hy-
perparameters, the entire training set was used to train the model
again, which was finally evaluated on the official test set. A set of
hyperparameters which showed consistently good performance on
all datasets is shown in Table 12 in the Supp. Material, alongside
the task-specific hyperparameters that we have found to yield the
best performance for each dataset (Tables 13, 14, 15, 16). We use
the Rectifying Adam optimizer [22] to obtain insensitivity in terms
of the optimal learning rate.

4.1 Regression
We include a representative range of 6 datasets from the Monash
University, UEA, UCR Time Series Regression Archive [30] in a
way so as to ensure diversity with respect to the dimensionality

Dataset Task (Metric) Sep., Bern. Sync., Bern. Sep., Stateful Sync., Stateful
Heartbeat Classif. (Acc.) 0.761 0.756 0.776 0.751

InsectWingbeat Classif. (Acc.) 0.641 0.632 0.687 0.689
Sp.Arab.Digits Classif. (Acc.) 0.994 0.994 0.998 0.996

PEMS-SF Classif. (Acc.) 0.873 0.879 0.896 0.879
Benz.Concentr. Regress. (RMSE) 0.681 0.493 0.494 0.684
BeijingPM25 Regress. (RMSE) 57.241 59.529 53.492 59.632
L.FuelMoisture Regress. (RMSE) 44.398 43.519 43.138 43.420

Table 3: Comparison of four different input value masking schemes evaluated for unsupervised learning on 4 classification
and 3 regression datasets. Two of the variants (‘Sep.’) involve separately generating themask for each variable, and two (‘Sync.’)
involve a single pattern over “time steps”, applied synchronously to all variables (see Fig. 3). Also, two of the variants (‘Bern.’)
involve sampling each “time step” independently based on a Bernoulli distribution with parameter 𝑝 = 𝑟 = 15%, while the
remaining two (‘Stateful’) involve using a Markov chain with two states, “masked” or “unmasked”, with different transition
probabilities 𝑝𝑚 = 1

𝑙𝑚
and 𝑝𝑢 = 𝑝𝑚

𝑟
1−𝑟 , such that the masked sequences follow a geometric distribution with a mean length of

𝑙𝑚 = 3 and each variable is masked on average by 𝑟 = 15%. The scheme we propose, separately masking each variable through
stateful generation, performs consistently well and shows the overall best performance across all examined datasets.

and length of time series samples, as well as the number of sam-
ples.Table 4 shows the Root Mean Squared Error achieved by of
our models, named TST for “Time Series Transformer”, including a
variant trained only through supervision, and one first pre-trained
on the same training set in an unsupervised way. We compare
them with the currently best performing models as reported in
the archive. Our transformer models rank first on all but two of
the examined datasets, for which they rank second. If we rank all
considered models according to their performance across datasets,
the proposed approach achieves an average rank of 1.33, setting it
clearly apart from all other models; the overall second best model,
XGBoost, has an average rank of 3.5, ROCKET (which outperformed
ours on one dataset) on average ranks in 5.67th place and Inception
(which outperformed ours on the second dataset) also has an aver-
age rank of 5.67. On average, our models attain 30% lower RMSE
than the mean RMSE among all models; also, approx. 16% lower
RMSE than the overall second best model (XGBoost), with absolute
improvements varying among datasets from approx. 4% to 36%.
We note that all other deep learning methods achieve performance
close to the middle of the ranking or lower. In Table 4 we report the
"average relative difference from mean" metric 𝑟 𝑗 for each model 𝑗 ,
over 𝑁 datasets:

𝑟 𝑗 =
1
𝑁

𝑁∑
𝑖=1

𝑅(𝑖, 𝑗) − 𝑅𝑖
𝑅𝑖

, 𝑅𝑖 =
1
𝑀

𝑀∑
𝑘=1

𝑅(𝑖, 𝑘)

, where 𝑅(𝑖, 𝑗) is the RMSE of model 𝑗 on dataset 𝑖 and 𝑀 is the
number of models.

Importantly, we also observe that the pre-trained transformer
models outperform the fully supervised ones in 3 out of 6 datasets.
This is interesting, because no additional samples are used for pre-
training: the benefit appears to originate from reusing the same
training samples for learning through an unsupervised objective.
To further elucidate this observation, we investigate the following
questions:

Q1: Given a partially labeled dataset of a certain size, how
will additional labels affect performance? This pertains to one
of the most important decisions that data owners face, namely, to

what extent will further annotation help. To clearly demonstrate
this effect, we choose the largest dataset we have considered from
the regression archive (12.5k samples), in order to avoid the variance
introduced by small set sizes. The left panel of Figure 2 (where each
marker is an experiment) shows how performance on the entire
test set varies with an increasing proportion of labeled training set
data used for supervised learning. As expected, with an increasing
proportion of available labels performance improves both for a fully
supervised model, as well as the same model that has been first
pre-trained on the entire training set through the unsupervised
objective and then fine-tuned. Interestingly, not only does the pre-
trained model outperform the fully supervised one, but the benefit
persists throughout the entire range of label availability, even when
the models are allowed to use all labels; this is consistent with our
previous observation on Table 4 regarding the advantage of reusing
samples.

Q2: Given a labeled dataset, howwill additional unlabeled
samples affect performance? In other words, to what extent does
unsupervised learning make it worth collecting more data, even if
no additional annotations are available? This question differs from
the above, as we now only scale the availability of data samples
for unsupervised pre-training, while the number of labeled samples
is fixed. The right panel of Figure 2 (where each marker is an ex-
periment) shows that, for a given number of labels (shown as a
percentage of the totally available labels), the more data samples are
used for unsupervised learning, the lower the error achieved (note
that the horizontal axis value 0 corresponds to fully supervised
training only, while all other values to unsupervised pre-training
followed by supervised fine-tuning). This trend is more linear in
the case of supervised learning on 20% of the labels (approx. 2500).
Likely due to a small sample (here, meaning set) effect, in the case
of having only 10% of the labels (approx. 1250) for supervised learn-
ing, the error first decreases rapidly as we use more samples for
unsupervised pre-training, and then momentarily increases, before
it decreases again. Consistent with our observations above, it is in-
teresting to again note that, for a given number of labeled samples,

even reusing a subset of the same samples for unsupervised pre-
training improves performance: for the 1250 labels (blue diamonds
of the right panel of Figure 2) this can be observed in the horizontal
axis range [0, 0.1], and for the 2500 labels (blue diamonds of the
right panel of Figure 2) in the horizontal axis range [0, 0.2].

4.2 Classification
We select a set of 11 multivariate datasets from the UEA Time Se-
ries Classification Archive [1] with diverse characteristics in terms
of the number, dimensionality and length of time series samples,
as well as the number of classes (see also Section A.1 of Supp.
Material and Table 7 for dataset characteristics and selection cri-
teria). As this archive is new, there have not been many reported
model evaluations; we follow [14] and use as a baseline the best
performing method studied by the creators of the archive, DTWD
(dimension-Dependent DTW), together with the method proposed
by [14] themselves (a dilation-CNN leveraging unsupervised and
supervised learning). Additionally, we use the publicly available
implementations [31] of ROCKET, which is currently the top per-
forming model for univariate time series and one of the best in
our regression evaluation, and XGBoost, which is one of the most
commonly used models for univariate and multivariate time se-
ries, and also the best baseline model in our regression evaluation
(Section 4.1). Finally, we did not find any reported evaluations of
RNN-based models on any of the UCR/UEA archives, possibly be-
cause of a common perception for long training and inference times,
as well as difficulty in training [11]; therefore, we implemented a
stacked LSTM model and also include it in the comparison. The
performance of the baselines alongside our own models are shown
in Table 5 in terms of accuracy, to allow comparison with reported
values.

It can be seen that our models performed best on 7 out of the 11
datasets, achieving an average rank of 1.7, followed by ROCKET,
which performed best on 3 datasets and on average ranked 2.3th.
The dilation-CNN [14] and XGBoost, which performed best on the
remaining 1 dataset, tied and on average ranked 3.7th and 3.8th re-
spectively. Interestingly, we observe that all datasets on which
ROCKET outperformed our model were very low dimensional
(specifically, 3-dimensional). Although our models still achieved the
second best performance for UWaveGestureLibrary, in general we
believe that this indicates a relative weakness of our current models
when dealing with very low dimensional time series. As discussed
in Section 3.1, this may be due to the problems introduced to the
attention mechanism by a low-dimensional representation space,
as well as the added positional embeddings. To mitigate this issue,
in future work we intend to use a 1D-convolutional layer to extract
more meaningful representations of low-dimensional input features
(see Section 3.1). Conversely, our models performed particularly
well on very high-dimensional datasets (FaceDetection, HeartBeat,
InsectWingBeat, PEMS-SF), and/or datasets with relatively more
training samples. As a characteristic example, on InsectWingBeat
(which is by far the largest dataset with 30k samples and contains
time series of 200 dimensions and highly irregular length) ourmodel
reached an accuracy of 0.689, while all other methods performed
very poorly - the second best was XGBoost with an accuracy of
0.369. However, we note that our model performed exceptionally

well also on datasets with only a couple of hundred samples, which
in fact constitute 8 out of the 11 examined datasets.

Finally, we observe that the pre-trained transformer models per-
formed better than the fully supervised ones in 8 out of 11 datasets,
sometimes by a substantial margin. Again, no additional samples
were available for unsupervised pre-training, suggesting the benefit
to originate from merely reusing the same samples in a different
training task.

5 ADDITIONAL POINTS & FUTUREWORK
Execution time for training: While a precise comparison in
terms of training time is well out of scope for the present work, in
Section A.2 (Table ??) of the Supp. Material we demonstrate that
our transformer-based method is economical in terms of its use of
computational resources. Alternative self-attention schemes, such
as sparse attention patterns [19], recurrence [6] or compressed
(global-local) attention [3], can help drastically reduce the 𝑂 (𝑤2)
complexity of the self-attention layers with respect to the time
series length𝑤 , which is the main performance bottleneck.

Imputation and forecasting: The model and training process
described in Section 3.3 is exactly the setup required to perform
imputation of missing values, without any modifications, and we
observed that it was possible to achieve very good results following
this method; as a rough indication, our models could reach RMSE
very close to 0 on the test set when denoising samples. In Figure ??
of the Supp. Material we show an example of imputation on one of
the datasets presented in this work. However, we defer a systematic
quantitative comparison with the state of the art to future work.
Furthermore, we note that one may simply use different patterns
of masking to achieve additional objectives, while the rest of the
model and setup remain the same. For example, using a mask which
conceals the last part of all variables simultaneously, one may per-
form forecasting (see Figure 3 in Supp. Material), while for longer
time series one may additionally perform this process within a
sliding window.

Extracted representations: The representations zt extracted
by the transformer models can be aggregated (e.g. averaged) over 𝑡
and used for evaluating similarity between time series, clustering,
visualization and any other use cases where time series representa-
tions are used in practice. A valuable benefit offered by transformers
is that representations can be independently addressed for each time
step; this means that, for example, a greater weight can be placed
at the beginning, middle or end of the time series, which allows
to selectively compare time series, visualize temporal evolution of
samples, and other use cases.

6 CONCLUSION
In this work we propose, for the first time, a transformer-based
framework for unsupervised representation learning of multivari-
ate time series. By evaluating our models on several benchmark
datasets for multivariate time series regression and classification,
we show that our modeling approach represents the first method
employing unsupervised learning of multivariate time series that
surpasses the performance of all current state-of-the-art super-
vised methods. It does so by a significant margin, even when the
number of training samples is very limited, while no other deep

50

52

54

56

58

60

62

64

66

68

70

0 0.2 0.4 0.6 0.8 1

Availability of labels

Unsup. pretrained

Supervised

58

60

62

64

66

68

70

0 0.2 0.4 0.6 0.8 1

Use of data for unsupervised pre-training

0.1 of labels

0.2 of labels

R
M

SE

58

60

62

64

66

68

70

0 0.2 0.4 0.6 0.8 1

Use of data for unsupervised pre-training

0.1 of labels

0.2 of labels

R
M

SE
Figure 2: Dataset: BeijingPM25Quality. Left: Root Mean Squared Error of a fully supervised transformer (orange circles) and
the same model pre-trained (blue diamonds) on the training set through the unsupervised objective and then fine-tuned on
available labels, versus the proportion of labeled data in the training set. Right: Root Mean Squared Error of a given model as
it changes with the number of samples used for unsupervised pre-training (here, shown as a proportion of the total number
of samples in the training set). A horizontal axis value of 0 means fully supervised learning only, while all other values
correspond to unsupervised pre-training followed by supervised fine-tuning. For the supervised learning part, two levels of
label availability are depicted: 10% (purple circles) and 20% (green squares) of all training data labels.

Root MSE
Ours

Dataset SVR Random
~Forest XGBoost 1-NN-ED 5-NN

-ED
1-NN-
DTWD

5-NN-
DTWD Rocket FCN ResNet Inception TST

(sup. only)
TST

(pretrained)
AppliancesEnergy 3.457 3.455 3.489 5.231 4.227 6.036 4.019 2.299 2.865 3.065 4.435 2.228 2.375
BenzeneConcentr. 4.790 0.855 0.637 6.535 5.844 4.983 4.868 3.360 4.988 4.061 1.584 0.517 0.494

BeijingPM10 110.574 94.072 93.138 139.229 115.669 139.134 115.502 120.057 94.348 95.489 96.749 91.344 86.866
BeijingPM25 75.734 63.301 59.495 88.193 74.156 88.256 72.717 62.769 59.726 64.462 62.227 60.357 53.492

LiveFuelMoisture 43.021 44.657 44.295 58.238 46.331 57.111 46.290 41.829 47.877 51.632 51.539 42.607 43.138
IEEEPPG 36.301 32.109 31.487 33.208 27.111 37.140 33.572 36.515 34.325 33.150 23.903 25.042 27.806

Avg.Rel.Diff.Mean 0.097 -0.172 -0.197 0.377 0.152 0.353 0.124 -0.048 0.021 0.005 -0.108 -0.301 -0.303
Avg Rank 7.166 4.5 3.5 10.833 8 11.167 7.667 5.667 6.167 6.333 5.666 1.333
Table 4: Performance on multivariate regression datasets, in terms of Root Mean Squared Error. Bold indicates best values,
underlining indicates second best. Avg.Rel.Diff.Mean: Average Relative Difference fromMean over all models, e.g. -0.3 means
that the model on average attains 30% less RMSE on a dataset than the average model performance on the same dataset.

learning method ranks among the top performing. Furthermore,
we demonstrate that unsupervised pre-training of our transformer
models offers a substantial performance benefit over fully super-
vised learning, even without leveraging additional unlabeled data,
i.e., by reusing the existing data samples through our proposed
unsupervised objective. Finally, the proposed framework can be
readily used for additional downstream tasks, such as forecasting,
clustering and missing value imputation.

ACKNOWLEDGEMENTS
G. Zerveas would like to acknowledge the Onassis Foundation
for financial support. This research is supported in part by the

NSF (IIS-1956221). The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
NSF or the U.S. Government.

REFERENCES
[1] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large,

Aaron Bostrom, Paul Southam, and Eamonn Keogh. 2018. The UEA multivariate
time series classification archive, 2018. arXiv:1811.00075 [cs, stat] (Oct. 2018).

[2] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. 2017. The Great Time
Series Classification Bake Off: a Review and Experimental Evaluation of Recent
Algorithmic Advances. Data Mining and Knowledge Discovery 31 (2017), 606–
660. Issue 3.

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. arXiv:2004.05150 [cs] (April 2020).

Ours
Dataset TST (pretrained) TST (sup. only) Rocket XGBoost LSTM Frans. et al DTW_D

EthanolConcentration 0.326 0.337 0.452 0.437 0.323 0.289 0.323
FaceDetection 0.689 0.681 0.647 0.633 0.577 0.528 0.529
Handwriting 0.359 0.305 0.588 0.158 0.152 0.533 0.286
Heartbeat 0.776 0.776 0.756 0.732 0.722 0.756 0.717

JapaneseVowels 0.997 0.994 0.962 0.865 0.797 0.989 0.949
InsectWingBeat 0.687 0.684 - 0.369 0.176 0.16 -

PEMS-SF 0.896 0.919 0.751 0.983 0.399 0.688 0.711
SelfRegulationSCP1 0.922 0.925 0.908 0.846 0.689 0.846 0.775
SelfRegulationSCP2 0.604 0.589 0.533 0.489 0.466 0.556 0.539
SpokenArabicDigits 0.998 0.993 0.712 0.696 0.319 0.956 0.963
UWaveGestureLibrary 0.913 0.903 0.944 0.759 0.412 0.884 0.903

Avg Accuracy
(excl. InsectWingBeat) 0.748 0.742 0.725 0.659 0.486 0.703 0.669

Avg Rank 1.7 2.3 3.8 5.4 3.7 4.1
Table 5: Accuracy on multivariate classification datasets. Bold indicates best and underlining second best values. A dash indi-
cates that the corresponding method failed to run on this dataset.

[4] FilippoMaria Bianchi, Lorenzo Livi, Karl ØyvindMikalsen, Michael Kampffmeyer,
and Robert Jenssen. 2019. Learning representations of multivariate time series
with missing data. Pattern Recognition 96 (Dec. 2019), 106973. https://doi.org/
10.1016/j.patcog.2019.106973

[5] T. Brown, B. Mann, et al. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[6] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Attentive Language Models Beyond a
Fixed-Length Context. arXiv:1901.02860 [cs, stat] (June 2019).

[7] Edward De Brouwer, Jaak Simm, AdamArany, and Yves Moreau. 2019. GRU-ODE-
Bayes: Continuous Modeling of Sporadically-Observed Time Series. In Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett (Eds.).
Curran Associates, Inc., 7379–7390.

[8] Angus Dempster, Franccois Petitjean, and Geoffrey I. Webb. 2020. ROCKET:
exceptionally fast and accurate time series classification using random con-
volutional kernels. Data Mining and Knowledge Discovery (2020). https:
//doi.org/10.1007/s10618-020-00701-z

[9] Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. 2020. MINIROCKET:
A Very Fast (Almost) Deterministic Transform for Time Series Classification.
arXiv:2012.08791 [cs, stat] (Dec. 2020).

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805

[11] Hassan Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. 2019. Deep learning for time series classification: a review.
Data Mining and Knowledge Discovery 33, 4 (July 2019), 917–963. https://doi.
org/10.1007/s10618-019-00619-1

[12] H. Fawaz, B. Lucas, et al. 2019. InceptionTime: Finding AlexNet for Time Series
Classification. ArXiv (2019). https://doi.org/10.1007/s10618-020-00710-y

[13] Vincent Fortuin, M. Hüser, Francesco Locatello, Heiko Strathmann, and G. Rätsch.
2019. SOM-VAE: Interpretable Discrete Representation Learning on Time Series.
ICLR (2019).

[14] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised
Scalable Representation Learning for Multivariate Time Series. In Advances in
Neural Information Processing Systems 32, H.Wallach, H. Larochelle, A. Beygelz-
imer, F. Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 4650–
4661.

[15] Cheng-Zhi Anna Huang, Ashish Vaswani, et al. 2018. Music transformer: Gener-
ating music with long-term structure. In International Conference on Learning
Representations.

[16] A. Jansen, M. Plakal, Ratheet Pandya, D. Ellis, Shawn Hershey, Jiayang Liu, R. C.
Moore, and R. A. Saurous. 2018. Unsupervised Learning of Semantic Audio
Representations. 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2018). https://doi.org/10.1109/ICASSP.2018.8461684

[17] A. Kopf, Vincent Fortuin, Vignesh Ram Somnath, and M. Claassen. 2019. Mixture-
of-Experts Variational Autoencoder for clustering and generating from similarity-
based representations. ICLR 2019 (2019).

[18] Qi Lei, Jinfeng Yi, R. Vaculín, Lingfei Wu, and I. Dhillon. 2017. Similarity Pre-
serving Representation Learning for Time Series Analysis. ArXiv (2017).

[19] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking thememory bottleneck
of transformer on time series forecasting. In Advances in Neural Information
Processing Systems. 5243–5253.

[20] Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. 2020. Temporal
Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting.
arXiv:1912.09363 [stat.ML]

[21] J. Lines, Sarah Taylor, and Anthony J. Bagnall. 2018. Time Series Classification
with HIVE-COTE. ACM Trans. Knowl. Discov. Data (2018). https://doi.org/10.
1145/3182382

[22] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. 2020. On the Variance of the Adaptive Learning Rate and
Beyond. arXiv:1908.03265 [cs, stat] (April 2020).

[23] Benjamin Lucas, Ahmed Shifaz, et al. 2019. Proximity Forest: An effective and
scalable distance-based classifier for time series. Data Mining and Knowledge
Discovery 33, 3 (May 2019), 607–635. https://doi.org/10.1007/s10618-019-00617-3

[24] Xinrui Lyu, Matthias Hueser, Stephanie L. Hyland, George Zerveas, and Gunnar
Raetsch. 2018. Improving Clinical Predictions through Unsupervised Time Se-
ries Representation Learning. In Proceedings of the NeurIPS 2018 Workshop on
Machine Learning for Health. arXiv:1812.00490

[25] J. Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, A. Vetro, and S. Chang.
2019. CDSA: Cross-Dimensional Self-Attention for Multivariate, Geo-tagged
Time Series Imputation. arXiv:1905.09904 [cs.CS]

[26] P. Malhotra, T. Vishnu, L. Vig, Puneet Agarwal, and G. Shroff. 2017. TimeNet:
Pre-trained deep recurrent neural network for time series classification. ESANN
(2017).

[27] Colin Raffel, Noam Shazeer, et al. 2019. Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer. ArXiv abs/1910.10683 (2019).

[28] Sheng Shen, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. PowerNorm: Rethinking Batch Normalization in Transformers.
arXiv:2003.07845 [cs] (June 2020).

[29] Ahmed Shifaz, Charlotte Pelletier, F. Petitjean, and Geoffrey I. Webb. 2020. TS-
CHIEF: a scalable and accurate forest algorithm for time series classification.
Data Mining and Knowledge Discovery (2020). https://doi.org/10.1007/s10618-
020-00679-8

[30] C. Tan, C. Bergmeir, François Petitjean, and Geoffrey I. Webb. 2020. Monash
University, UEA, UCR Time Series Regression Archive. ArXiv (2020).

[31] Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I Webb.
2020. Time Series Regression. arXiv preprint arXiv:2006.12672 (2020).

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 5998–6008.

[33] Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. 2020. Deep Trans-
former Models for Time Series Forecasting: The Influenza Prevalence Case.
arXiv:2001.08317 [cs.LG]

https://doi.org/10.1016/j.patcog.2019.106973
https://doi.org/10.1016/j.patcog.2019.106973
https://arxiv.org/abs/2005.14165
https://doi.org/10.1007/s10618-020-00701-z
https://doi.org/10.1007/s10618-020-00701-z
https://arxiv.org/abs/1810.04805
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1109/ICASSP.2018.8461684
https://arxiv.org/abs/1912.09363
https://doi.org/10.1145/3182382
https://doi.org/10.1145/3182382
https://doi.org/10.1007/s10618-019-00617-3
https://arxiv.org/abs/1812.00490
https://arxiv.org/abs/1905.09904
https://doi.org/10.1007/s10618-020-00679-8
https://doi.org/10.1007/s10618-020-00679-8
https://arxiv.org/abs/2001.08317

[34] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, C. Lumezanu, Wei
Cheng, Jingchao Ni, B. Zong, H. Chen, and Nitesh V. Chawla. 2019. A Deep Neural
Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate
Time Series Data. In AAAI. https://doi.org/10.1609/aaai.v33i01.33011409

A SUPPLEMENTARY MATERIAL
A.1 Criteria for dataset selection
We select a diverge range of datasets from the Monash University,
UEA, UCR Time Series Regression and Classification Archives, from
many domains across sciences and engineering, in a way so as to
ensure diversity with respect to the dimensionality and length of
time series samples, as well as the number of samples and classes
(when applicable). Additionally, we have tried to include both "easy"
and "difficult" datasets (where the baselines perform very well or
less well).

Dataset Train.size Test size Length Dim. Miss.Values
AppliancesEnergy 96 42 144 24 No
BenzeneConcent. 3433 5445 240 8 Yes
Beij.PM10Qual. 12432 5100 24 9 Yes
Beij.PM25Qual. 12432 5100 24 9 Yes
L.FuelMoist.Cont. 3493 1510 365 7 No

IEEEPPG 1768 1328 1000 5 No
Table 6: Multivariate Regression Datasets

Dataset Train.size Test size Dim. Length Classes
EthanolConcent. 261 263 3 1751 4
FaceDetection 5890 3524 144 62 2
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2

InsectWingbeat 30000 20000 200 30 10
JapaneseVowels 270 370 12 29 9

PEMS-SF 267 173 963 144 7
SelfReg.SCP1 268 293 6 896 2
SelfReg.SCP2 200 180 7 1152 2
Sp.Arab.Digits 6599 2199 13 93 10
UWaveGest.Lib. 120 320 3 315 8

Table 7: Multivariate Classification Datasets

Dataset Standard deviation
Supervised TST Pre-trained TST

AppliancesEnergy 0.240 0.163
BenzeneConcentration 0.031 0.092
BeijingPM10Quality 0.689 0.813
BeijingPM25Quality 0.189 0.253
LiveFuelMoisture 0.735 0.013

IEEEPPG 1.079 1.607
Table 8: Standard deviation of the Root Mean Square Error
displayed by the Time Series Transformer models on multi-
variate regression datasets

Dataset Standard deviation
Supervised TST Pre-trained TST

EthanolConcentration 0.024 0.002
FaceDetection 0.007 0.006
Handwriting 0.020 0.006
Heartbeat 0.018 0.018

InsectWingbeat 0.003 0.026
JapaneseVowels 0.000 0.0016

PEMS-SF 0.017 0.003
SelfRegulationSCP1 0.005 0.006
SelfRegulationSCP2 0.020 0.003
SpokenArabicDigits 0.0003 0.001
UWaveGestureLibrary 0.005 0.003

Table 9: Standard deviation of accuracy displayed by the
Time Series Transformer models on multivariate classifica-
tion datasets

. . .

t1 t2 t3
tw

x1

x2

xm

𝒙𝑤𝒙1

forecasting

. . .

t1 t2 t3
tw

x1

x2

xm

𝒙𝑤𝒙1

synchronous noise

Figure 3: Masking schemes within our transformer encoder
framework: for implementation of forecasting objective
(left), for an alternative unsupervised learning objective in-
volving a single noise distribution over time steps, applied
synchronously to all variables (right).

A.2 Execution time
To demonstrate that our models can be trained practically, we
recorded the times required for training our fully supervised models
until convergence on a Tesla P100 GPU, as well as for the currently
fastest and top performing (in terms of classification accuracy and
regression error) baseline methods, ROCKET and XGBoost on a
CPU. These have been shown to be orders of magnitude faster than
methods such as TS-CHIEF, Proximity Forest, Elastic Ensembles,
DTW and HIVE-COTE, but also deep learning based methods [8].
Although XGBoost and ROCKET are much faster than the trans-
former on a CPU, as can be seen in Table ??, exploiting commodity
GPUs and the parallel processing capabilities of a transformer typi-
cally enables as fast (and sometimes faster) training times as these
methods, which are currently the fastest available5. In practice,
despite allowing for many hundreds of epochs, using a GPU we
never trained our models longer than 3 hours on any of the exam-
ined datasets. Furthermore, we note that inference times (per batch
or sample) were approx. 2 times faster than training times, and
differences between the transformer and the other models become
even less significant.

5MiniROCKET (Dec. 2020) is a method concurrent to our own, which improves dra-
matically over ROCKET in terms of speed, while retaining the same accuracy.

https://doi.org/10.1609/aaai.v33i01.33011409

Parameter Value
dim. model 128
dim. FFW 256
num. heads 16

num. encoder blocks 3
batch size 128

Table 12: Hyperparameter configuration that performs rea-
sonably well for all transformer models.

Dataset n.blocks n.heads dim. model dim. FFW
AppliancesEnergy 3 8 128 512
BenzeneConcentr. 3 8 128 256

BeijingPM10 3 8 64 256
BeijingPM25 3 8 64 (128) 256

LiveFuelMoisture 3 8 64 256
IEEEPPG 3 8 512 512

Table 13: Supervised TST model hyperparameters for the
multivariate regression datasets

Dataset n.blocks n.heads dim. model dim. FFW
AppliancesEnergy 3 16 128 512
BenzeneConcentr. 1 8 128 256

BeijingPM10 3 8 64 256
BeijingPM25 3 8 128 256

LiveFuelMoisture 3 8 64 256
IEEEPPG 4 16 512 512

Table 14: Unsupervised TSTmodel hyperparameters for the
multivariate regression datasets

Dataset n.blocks n.heads dim. model dim. FFW
Eth.Concentr. 1 8 64 256
FaceDetection 3 8 128 256
Handwriting 1 8 128 256
Heartbeat 1 8 64 256

JapaneseVowels 3 8 128 256
PEMS-SF 1 8 128 512

SelfReg.SCP1 3 8 128 256
SelfReg.SCP2 3 8 128 256
Sp.Arab.Digits 3 8 64 256
UWaveGest.Lib. 3 16 256 256

Table 15: Supervised TST model hyperparameters for the
multivariate classification datasets

Dataset n.blocks n.heads dim. model dim. FFW
Eth.Concentr. 1 8 64 256
FaceDetection 3 8 128 256
Handwriting 3 16 64 256
Heartbeat 1 8 64 256

JapaneseVowels 3 8 128 256
PEMS-SF 1 8 256 512

SelfReg.SCP1 3 16 256 512
SelfReg.SCP2 3 8 256 512
Sp.Arab.Digits 3 8 64 256
UWaveGest.Lib. 3 16 256 512

Table 16: Unsupervised TSTmodel hyperparameters for the
multivariate classification datasets

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Base model
	3.2 Regression and classification
	3.3 Unsupervised (self-supervised) pre-training

	4 Experiments & Results
	4.1 Regression
	4.2 Classification

	5 Additional points & Future Work
	6 Conclusion
	References
	A Supplementary Material
	A.1 Criteria for dataset selection
	A.2 Execution time

