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Objectives—To create a deep learning algorithm capable of video classification,
using a long short-term memory (LSTM) network, to analyze collapsibility of
the inferior vena cava (IVC) to predict fluid responsiveness in critically ill
patients.

Methods—We used a data set of IVC ultrasound (US) videos to train the LSTM
network. The data set was created from IVC US videos of spontaneously breath-
ing critically ill patients undergoing intravenous fluid resuscitation as part of
2 prior prospective studies. We randomly selected 90% of the IVC videos to
train the LSTM network and 10% of the videos to test the LSTM network’s abil-
ity to predict fluid responsiveness. Fluid responsiveness was defined as a greater
than 10% increase in the cardiac index after a S00-mL fluid bolus, as measured
by bioreactance.

Results—We analyzed 211 videos from 175 critically ill patients: 191 to train the
LSTM network and 20 to test it. Using standard data augmentation techniques,
we increased our sample size from 191 to 3820 videos. Of the 175 patients,
91 (52%) were fluid responders. The LSTM network was able to predict fluid
responsiveness moderately well, with an area under the receiver operating char-
acteristic curve of 0.70 (95% confidence interval [CI], 0.43-1.00), a positive like-
lihood ratio of infinity, and a negative likellhood ratio of 0.3 (95% CI,
0.12-0.77). In comparison, point-of-care US experts using video review offline
and manual diameter measurement via software caliper tools achieved an area
under the receiver operating characteristic curve of 0.94 (95% CI, 0.83-0.99).

Conclusions—We demonstrated that an LSTM network can be trained by using
videos of IVC US to classify IVC collapse to predict fluid responsiveness. Our
LSTM network performed moderately well given the small training cohort but
worse than point-of-care US experts. Further training and testing of the LSTM
network with a larger data sets is warranted.

Key Words—artificial intelligence; critical care; deep learning; emergency
medicine; fluid responsiveness; inferior vena cava; long short-term memory;
point-of-care ultrasound

patients have sought to tailor intravenous (IV) fluid
resuscitation to patients’ physiologic states." Routine use
of invasive hemodynamic monitoring by pulmonary artery
catheterization fell from favor in the early 2000s when high-

F or more than half a century, physicians caring for critically ill
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quality trial data demonstrated increased patient risk
without improved outcomes.” Over the last 20 years,
physicians have tested a variety of noninvasive
technologies to guide IV fluid resuscitation, yet no
single modality has attained widespread clinical
acceptance.3

Although the risks of under-resuscitation have
long been recognized, over the last decade, numerous
studies have illustrated the harms of over-
resuscitation.* ® After the decline of invasive hemody-
namic monitoring, the evidence for using noninvasive
technology to tailor IV fluid resuscitation to individ-
ual patient needs was largely limited to clinical anec-
dotal and observational data.” In 2019, Pontet et al®
were the first to show in a randomized trial that ultra-
sound (US)-guided IV fluid resuscitation in the inten-
sive care unit (ICU) reduced the patient fluid balance
and decreased the time receiving mechanical ventila-
tion. The subsequent Fluid Response Evaluation in
Sepsis Hypotension and Shock trial demonstrated
that a noninvasive fluid resuscitation protocol that
used bioreactance to measure patient hemodynamics
to direct IV fluid resuscitation reduced the amount of
IV fluids given to patients with septic shock.” That
trial observed decreased rates of acute kidney injury
and respiratory failure associated with excess IV
fluids.

It is in this backdrop that physicians have pro-
posed the use of point-of-care ultrasound (POCUS)
to guide IV fluid resuscitation.'® Point-of-care US-
guided IV fluid resuscitation offers the advantage of
the near omnipresence of US machines in clinical
environments and physician familiarity, which other
noninvasive technologies such as bioreactance lack.""
Although emergency and critical care medicine socie-
ties advise that POCUS proficiency requires sufficient
residency or fellowship training that includes quality
assessment teaching sessions and at least 150 US
scans covering a range of organs, clinically, POCUS is
being widely adopted to guide clinical decisions by a
variety of clinicians with relatively limited US skills
and training.'>"?

Measurement of the collapsibility of the inferior
vena cava (cIVC) predicts fluid responsiveness rea-
sonably well when performed by expert sonologists in
spontaneously breathing patients (area under the
receiver operating characteristic curve [AUROC],
0.82)."* However, work by our group showed that

the test characteristics were not as favorable when
POCUS examinations were performed by novice
sonologists (AUROC, 069)." In addition, poor-to-moderate
interrater agreement in cIVC measurement among nonexpert
sonologists has been reported by other authors.'*™'®
Training clinicians to a level at which they obtain
the requisite skills necessary to accurately use
POCUS-measured cIVC to guide IV fluid resuscita-
tion might be the most substantial hurdle this
approach faces before it can be widely adopted. Arti-
ficial intelligence using deep learning
(DL) algorithms has been proposed as a solution to
overcome skill gaps to make the widespread use of
POCUS-directed IV fluid resuscitation more feasi-
ble, reliable, and useful.'®

The primary aim of our study was to create a DL
algorithm using videos of cIVC measurements to pre-
dict fluid responsiveness among spontaneously
breathing critically ill patients. We then tested the
performance of our DL algorithm in predicting fluid
responsiveness compared to bioreactance-determined
fluid responsiveness. In addition, we further com-
pared the performance of the DL algorithm against
POCUS experts who measured cIVC during offline
video review and measurement to predict fluid
responsiveness.

Materials and Methods

Study Design

We performed a secondary analysis of cIVC POCUS
measurements recorded on video files from 2 previous
prospective studies to create a DL algorithm.'>*° We
sought to determine whether the DL algorithm was
able to predict fluid responsiveness via a VGG-16
bidirectional long short-term memory (LSTM) net-
work. Details of the participant enrollment criteria
have been previously described.'>*° Briefly, patients
were eligible for participation if they were spontane-
ously breathing, admitted to a medical ICU, and had
signs of acute circulatory failure. A POCUS examina-
tion was performed before the IV fluid bolus. Fluid
responsiveness was defined as a 10% increase in the
cardiac index after a 500-mL bolus of normal saline
detected by noninvasive cardiac output monitoring
(Cheetah Medical, Tel Aviv, Israel). This approach is
regarded as standard and safe when determining fluid

J Ultrasound Med 2020; 9999:1-10



Blaivas et al—Atrtificial Intelligence Versus Sonologist IVC Collapsibility Assessment

Figure 1. Long short-term memory network concept diagram (courtesy of Kira Blaivas).
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responsiveness in critically ill patients.'*"> Written
informed consent for the original video data was
obtained from each study participant or his or her
surrogate. The Institutional Review Board waived
repeated informed consent for the secondary analysis.
All patient identifiers were removed from the study
videos before analysis.

Study Data and Manipulation

A total of 211 videos of POCUS-measured cIVC
from 175 critically ill patients were extracted from
210 Digital Imaging and Communications in Medi-
cine files. Video data types were AVI and MP4. Based
on the results of the bioreactance measured for each
patient during the course of the study, participants
were determined to be “fluid responders” or
“nonresponders,” and their POCUS videos were cate-
gorized accordingly. We randomly selected 191 videos
for DL training (99 fluid responders and 92 nonre-
sponders) and 20 videos for DL testing (9 fluid
responders and 11 nonresponders). We used data
augmentation, as described below, to amplify the
available number of videos for the DL algorithm
training. Data augmentation is a common practice in
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DL algorithm training that leads to improved training
results.”' In addition to each video being included in
its original format, we used FFmpeg open-source soft-
ware (https:/ /ffmpeg.org/ ) to perform vertical and
horizontal flips, mirroring, and 45° and 90° clockwise
and anticlockwise rotations on each video. FFmpeg
was used to complete a single rotation or flip manipu-
lation on each of the training videos before initiating
the next script to accomplish another manipulation
on the original videos. After augmentation, a total of
3820 videos (1980 fluid responder and 1840 non-
responder videos) were available for DL training.

Algorithm Design

We used Python programming language version 3.72
(Python Software Foundation, Wilmington, DE) with
the Anaconda (Austin, TX) package manager to man-
age packages and facilitate scripting and a publicly
available Keras-based (a Python DL library or frame-
work) VGG-16 bidirectional LSTM DL algorithm.
The VGG-16 model is available from various public
sources, including github.com (an online scripting
repository). VGG-16 is an early convolutional neural
network using 16 layers and has been shown to be
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Table 1. Participant Characteristics Among the Training Set

Nonresponders by NICOM

Fluid Responders by NICOM

Characteristic (n=91)° (n =84)° p°
Demographic and clinical characteristics
Age, y 52 (35-71) 575 (44.0-69.5) .38
Male 50 (55.0) 41 (48.8) 45
BMI, kg/m? 245 (21.4-29.0) 25.1(22.4-29.7) 54
APACHE Il score 16 (12-22) 15 (11-24) .89
Fluid and other resuscitation
IV fluid before US, mL 4000 (2050-5000) 3550 (3000-4050) 34
IV fluid administered during study, mL 500 (500-500) 500 (500-500) .65
Duration of fluid bolus, min 8 (6-11) 7(6-10) .76
Required vasopressor 20 (22.0) 12 (14.3) 24
Medical history
Hypertension 49 (53.8) 44 (52.4) .88
Diabetes mellitus 49 (53.8) 44 (52.4) .88
Cardiomyopathy 27 (29.7) 18 (21.4) 23
Alcohol abuse 11(12.1) 18 (21.4) 14
COPD 4(4.4) 19 (22.6) <.001
Pulmonary embolism 0(0.0) 2(2.4) 23
Pulmonary hypertension 10 (11.0) 1(1.2) .01
Hospital discharge diagnosis
Severe sepsis/septic shock 34 (374) 35 (41.7) .64
DKA/HHS 36 (39.6) 26 (30.9) 27
Gastrointestinal hemorrhage 11(12.1) 7(8.3) 46
Alcohol withdrawal 11D 2(2.4) .61
Respiratory failure secondary to pneumonia 33.3) 4 (4.76) 71
Outcomes
ICU length of stay, d 2 (2-4) 2(2-3) 22
Hospital length of stay, d 5(3-7) 5 (3-7) .89
Alive at discharge 84 (92.3) 79 (94.1) 77

Data are presented as median (interquartile range) and number (percent) where applicable. APACHE indicates Acute Physiology and
Chronic Health Evaluation; BMI, body mass index; COPD, chronic obstructive pulmonary disease; DKA, diabetic ketoacidosis; HHS, hyper-
osmolar hyperglycemic syndrome; NICOM, noninvasive cardiac output monitoring.

“Note that some participants contributed multiple videos, so the total number of participants was not equal to the total number of videos for

the training set.

bP values were based on the Wilcoxon rank sum test for continuous variables and the Fisher exact test for categorical variables.

superior for US DL applications.”* By analyzing indi-
vidual frames, LSTM can track temporal changes and
relationships in real-time video to create an algorithm
for US video analysis. Long short-term memory has
additional layers in the network algorithm architec-
ture, which track temporal changes in images
(changes in the US image in a cine loop such as con-
traction of the heart). In contrast to standard LSTM
unidirectional networks, the bidirectional aspect
allows the flow of temporally related information in
both forward and reverse directions through the algo-
rithm. This feature makes the architecture more sensi-
tive and specific at detecting changes in the image
from frame to frame, thereby identifying changes in

action. Additionally, it improves the network’s under-
standing of the context of the motion (Figure 1). The
VGG-16 bidirectional LSTM used weights trained on
the UCF-101 action recognition data set (University
of Central Florida, Orlando, FL). Weights are learn-
able parameters in neural networks responsible for
their ability to interpret images.

We trained our bidirectional LSTM algorithm by
manipulating optimizers, learning rates, and batch size
(which are all adjustable settings that affect a con-
volutional neural network’s training performance)
during training for optimal training times and accura-
cies, while avoiding exploding gradients (dramatic
changes in learning parameters of the convolutional
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Parameter

Hemodynamic measurements
Mean arterial pressure, mm Hg

Heart rate, beats/min

Baseline stroke volume, mL
Post-IV fluid bolus stroke volume, mL
Change in baseline stroke volume, mL

Baseline cardiac index, L/min/m?

Post-IV fluid bolus cardiac index, L/min/
2
m

Change in cardiac index, L/min/m?
IVC US measurement clVC, %

Fluid
Nonresponders Responders

(n=91) (n=84) P?

60.9 (52.9-76.0) 63.5 (54.8-85.0) 27

109 (83-124) 112 (98.5-126.5) 14

76.8 (58.8-93.6) 66.3 (49.6-78.8) .01

73.0 (53.0-88.5) 86.6 (64.8-96.1) .01
-1.4(-6.4-35) 14.8 (9.2-21.7) <.001

3.4(2.9-4.0) 33(2.6-37) 10
33(2.6-3.7) 41(3.3-4.5) <.001
-0.1(-0.4-0.1) 0.7 (0.5-1.0) <.001
13.3 (79-23.4) 372 (29.1-51.9) <.001

Data are presented as median (interquartile range)
2P values were based on the Wilcoxon rank sum test.

neural network during training), which can result in train-
ing failure. The number of epochs, defined as a single
round of training through all of the data, was adjusted for
optimal results while avoiding overfitting. The best perfor-
mance was obtained with 60 epochs using a stochastic
gradient descent optimizer with a learning rate of 0.001.
A batch size of 100 videos ultimately produced the best
algorithm training performance.

Algorithm Validation and Testing

The bidirectional LSTM algorithm was coded to
automatically perform cross-validation with each
epoch. Cross-validation accuracy, learning, and training

Figure 2. Area under the receiver operating characteristic curve for
clVC to detect fluid responsiveness for expert sonologists in the
training set and expert sonologists and the DL algorithm in the
testing set.
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&
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losses were used to guide algorithm training adjustments.
After results were optimized and no further adjustments
improved performance, the algorithm was tested on the
randomly selected 10% testing data set. We executed a
testing script using our newly generated training weights
on the 20 separate inferior vena cava (IVC) US examina-
tion videos through the VGG-16 bidirectional LSTM to
predict fluid responsiveness. This step tested our algo-
rithm’s performance on videos that were not previously
used to train our DL algorithm. We then compared these
results to 2 POCUS experts who measured cIVC with cali-
pers during review of the same videos. The expert physi-
cian sonologists were attending ICU physicians who had
performed and reviewed more than 250 cIVC US

measurements.

Statistical Analyses

Participant demographics, clinical characteristics, and
clinical outcomes were summarized by descriptive sta-
tistics. Fisher exact and Wilcoxon rank sum tests were
used to compare fluid responders versus nonre-
sponders for dichotomous and continuous participant
characteristics and study outcomes, respectively. Test
performance characteristics, including the AUROC,
sensitivity, specificity, negative and positive predictive
values, and likelihood ratios, for distinguishing fluid
responsiveness were calculated. The Wilson method
was used to calculate 95% confidence intervals (CIs)
for the performance characteristics. We used Stata
14.2 software (StataCorp, College Station, TX) to
complete the above analyses.
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Table 3. Test Performance Characteristics for Changes in clVC to Determine Fluid Responsiveness

Fluid
clVC, % Responders Nonresponders Sensitivity, %

Accuracy, %
85 (62.1-96.8)

+LR -LR
0.3 (0.12-0.77)

NPV, %
76.9 (49.7-91.8)

PPV, %

100 (69.2-100)

Specificity, %

Method
DL

a

100 (69.2-100)

70 (34.8-93.3)

7

>25
<25
>25
<2bh

10

a 0.11(0.06-0.19) 95.0 (76.4-99.1)

88.9 (56.5-98.0) 100.0 (74.1-100.0) 100.0 (67.6-100.0)  91.7 (64.6-98.5)

0
1

8

Expert

sonologist

Values in parentheses are 95% Cls. LR indicates likelihood ratio; NPV, negative predictive value; and PPV, positive predictive value.

#Positive likelihood ratio could not be calculated because specificity was 100.0%.

Results

Study Participants

Table 1 provides participant demographics and clini-
cal characteristics. Ninety-one (52%) participants
were fluid responders. There were no differences
between fluid responders and nonresponders at base-
line, except fluid responders were more likely to have
a history of chronic obstructive pulmonary disease
and less likely to have a history of pulmonary hyper-
tension compared to nonresponders. Table 2 displays
the hemodynamic characteristics of fluid responders
and nonresponders. Fluid responders had a median
cIVC of 372% versus a cIVC of 13.3% for
nonresponders.

Outcomes

The best performance of the LSTM network was
attained with training for 60 epochs (a range of
10-200 were tested during training). The network
took 19 minutes 29 seconds to complete training and
10 seconds to review the test videos. Using the 20 test
videos, the LSTM network was able to predict fluid
responsiveness with an AUROC of 0.70 (95% CI,
0.43-1.00), correctly classifying 17 of 20 videos
(Figure 2 and Table 3). All 3 of the misclassifications
were in patients who were fluid responsive; the cIVC
was measured to be greater than 25% (37%, 38%, and
66%, respectively) by the expert sonologists but was
classified as nonresponsive by the LSTM network
(Figure 3). Expert sonologists who reviewed the same
POCUS videos were able to predict fluid responsive-
ness using a cIVC cutoff of 25%, with an AUROC of
0.94 (95% CI, 0.83-0.99; Table 3). Test characteris-
tics for all participant videos used to train the DL
algorithm as read by experts are displayed in Table 4.
In the training sample, expert sonologists were able
to predict fluid responsiveness, with an AUROC of
0.82 (95% CI, 0.76-0.89).

Discussion

In this pilot study, we built a DL algorithm using an
LSTM network to classify cIVC from POCUS videos.
Our study demonstrates that an LSTM network
trained on single-view short sagittal proximal IVC
videos can achieve moderately good initial test

J Ultrasound Med 2020; 9999:1-10
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Figure 3. Long short-term memory misclassifications: 3 participant videos of clVC (A-C) that were fluid responsive by bioreactance but

misclassified by the LSTM network.

characteristics (AUROC, 0.70) for predicting fluid
responsiveness among spontaneously breathing criti-
cally ill patients.

Clinicians have widely adopted the use of <IVC
measured by POCUS? to direct fluid resuscitation
despite evidence that image acquisition and interpre-
tation by novice sonologists often limit its accuracy.”*
Artificial intelligence has the potential to eliminate
errors in both image acquisition and interpretation
through automation, allowing novice sonologists to
overcome their own skill limitations. To date, only a
small number groups have studied automation or DL
to facilitate POCUS c¢IVC measurement. None have
compared it to an objective measure of fluid respon-
siveness. However, there is commercial interest in
automating cIVC evaluations among US machine
manufacturers.

In 2015, GE Healthcare (Waukesha, WI) released
the Auto-IVC tool, which relies on edge technology
to identify the IVC vessel walls and produce a real-
time cIVC calculation. Although the Auto-IVC tool
reportedly does not use DL, the automated diameter
measurement eliminates the burden of manually cal-
culating cIVC. Clinicians using this commercial fea-
ture must still obtain sufficient POCUS images of the
IVC, so the major benefit of Auto-IVC is its potential
to reduce measurement and interpretation errors
made by novice sonologists. Internal company data
are reported to show a good correlation with expert
POCUS measurement of IVC diameters; however,
publicly reported data supporting Auto-IVC’s feasibil-
ity and accuracy has yet to be released. Similar work
by another group has reported an initial proof-of-concept

J Ultrasound Med 2020

study on automation of cIVC measurement and interpreta-
tion.” That group’s algorithm requires researchers to select
points in the IVC vessel to allow for frame-by-frame
processing that tracks IVC movement in the B-mode, mak-
ing the technology user dependent and thereby limiting
widespread use.

In an effort to automate IVC image acquisition,
Chen et al*® used a porcine model to build a DL
algorithm capable of identifying and measuring the
IVC diameter. The algorithm used 48 data sets of
IVC images, including both static and dynamic US
videos. It could successfully localize the IVC in
98% of the cases and produced most IVC diameter
measurements that were within 15% of an expert
sonologist’s read. However, the stepwise process
required considerable cine loop preprocessing,
including use of various filters and image size
adjustments. Color Doppler US had to be used to
identify areas of interest based on the presence of
blood flow. Although encouraging, the numerous
steps in their approach suggest that automated IVC
image acquisition is in the early stages of develop-
ment, and it may be several years before any com-
mercial prototypes are available.

In some of the most promising work to date,
Belmont et al*’ used Kanade-Lucas-Tomasi feature
tracking and pyramidal segmentation to build an arti-
ficial intelligence algorithm capable of measuring
cIVC. Their complex algorithm analyzed S7 cine
loops from 47 spontaneously breathing hemodialysis
patients and demonstrated good agreement with
manual measurements by POCUS experts (>95% of
the artificial intelligence measurements differed by
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Table 4. Test Performance Characteristics for Changes in cIVC to Determine Fluid Responsiveness Read by Expert Sonologists Among the Training Set

Fluid
Responders

Nonresponders

clVC,

Sensitivity, % Specificity, % PPV, % NPV, % +LR -LR Accuracy, %

(n=91)

84)

(n

817
(75.3-86.7)

845 79.1 78.9 84.7 4.05 0.20
(75.3-90.7) (69.7-86.2) (69.4-86.0) (75.6-90.8) (3.88-4.23) (0.19-0.21)

19

71

>25

72

13

<2b

Values in parentheses are 95% Cls.

<10% from the expert reads). However, the algo-
rithm’s clinical application is limited because it
requires a clear and consistent IVC vessel edge to
facilitate tracking, which may be difficult to maintain
in the clinical setting,

Deep learning is a branch of artificial intelligence
that does not rely on prespecified parameters or rules
to interpret data. Instead, it studies patterns within
the data and draws unstructured associations.”® We
sought to use the ability of DL algorithms to find
novel associations and to be able to make predictions
where no actual anatomic localization, border identifi-
cation, or diameter measurements are required for
prediction of the outcome. Furthermore, rather than
requiring operators to obtain individual IVC images
or to break US cine loops into single images to ana-
lyze at a later date, we explored the potential of a
real-time application, which could analyze a cine loop
at the point of care. Future application of DL analysis
might be capable of running in real time while a nov-
ice sonologist scans the patient’s IVC. By embedding
our DL algorithm into a US system or simply by hav-
ing the application run on a real-time video feed from
the system, a novice would only have to obtain a sag-
ittal view of the proximal IVC. The DL algorithm
would do the rest, providing a nearly instant predic-
tion of fluid responsiveness. Introduction of such DL
technology into the hands of novice sonologists (resi-
dents, attending physicians, nurses, advanced practice
providers, and emergency medical technicians) could
greatly increase health care workers’ ability to individ-
ually tailor IV fluid resuscitation.

Our study had limitations. First our training
sample size (191 initial videos and 3820 augmented)
was relatively small to adequately train a DL algo-
rithm, which may lead to an overestimation or
underestimation of its performance. We that esti-
mate more than 1000 videos before augmentation
are needed for robust training based on the experi-
ence of authors working on similar networks but
with access to massive US databases.”’ Second, our
testing sample (20 patient videos) provided only an
initial point estimate of the algorithm’s ability to
predict fluid responsiveness. Our DL algorithm test
performance, with an AUROC of 0.70 (95% CI,
0.43-1.00), was similar to test characteristics we
reported in a prior study for novice sonologists using
cIVC to predict fluid responsiveness (AUROC,

J Ultrasound Med 2020; 9999:1-10
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0.69) but worse than expert sonologists (AUROC,
0.82)."° The range of the DL ClIs reflects the small
testing sample. Given our current data, it remains to
be seen whether further training will improve DL
test characteristics to match or exceed the perfor-
mance of expert sonologists or whether they will
more closely resemble novice test characteristics.
This may suggest that the LSTM network has diffi-
culty interpreting images that are intermittently
indistinct. Third, POCUS videos were obtained by
several ICU fellows and an emergency medicine resi-
dent. Prospective testing of our algorithm is needed
in a variety of clinical settings and by health care
workers with a range of US expertise.

In conclusion, we have demonstrated that it is
possible to construct an LSTM network capable of
reading videos of respirophasic variation of the IVC
in critically ill patients to predict fluid responsiveness.
Our LSTM network performed moderately well with
a small test sample but worse than expert sonologists.
Further training and testing of the network are
needed before clinical implementation.
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