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ABSTRACT

Background: Venovenous extracorporeal membrane oxygenation (VV-ECMO) is
associated with acute brain injury (ABI), including central nervous system (CNS)
ischemia (defined as ischemic stroke or hypoxic-ischemic brain injury [HIBI]) and
intracranial hemorrhage (ICH). Data on prediction models for neurologic outcomes
in VV-ECMO are limited.

Methods: We analyzed adult (age �18 years) VV-ECMO patients in the Extracorpo-
real Life Support Organization (ELSO) Registry (2009-2021) from 676 centers. ABI
was defined as CNS ischemia, ICH, brain death, and seizures. Data on 67 variables
were extracted, including clinical characteristics and pre-ECMO/on-ECMO variables.
Random forest, CatBoost, LightGBM, and XGBoost machine learning (ML) algorithms
(10-fold leave-one-out cross-validation) were used to predict ABI. Feature importance
scores were used to pinpoint the most important variables for predicting ABI.

Results: Of 37,473 VV-ECMO patients (median age, 48.1 years; 63% male), 2644
(7.1%) experienced ABI, including 610 (2%) with CNS ischemia and 1591 (4%)
with ICH. The areas under the receiver operating characteristic curve for predicting
ABI, CNS ischemia, and ICH were 0.70, 0.68, and 0.70, respectively. The accuracy,
positive predictive value, and negative predictive value for ABI were 85%, 19%,
and 95%, respectively. ML identified higher center volume, pre-ECMO cardiac ar-
rest, higher ECMO pump flow, and elevated on-ECMO serum lactate level as the
most important risk factors for ABI and its subtypes.

Conclusions: This is the largest study of VV-ECMO patients to use ML to predict
ABI reported to date. Performance was suboptimal, likely due to lack of standard-
ization of neuromonitoring/imaging protocols and data granularity in the ELSO Reg-
istry. Standardized neurologic monitoring and imaging are needed across ELSO
centers to detect the true prevalence of ABI. (JTCVS Open 2024;-:1-28)
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Machine learning performance to predict ABI in VV-
ECMO patients using the ELSO Registry.
CENTRAL MESSAGE

Using the largest global database
of extracorporeal membrane
oxygenation (ECMO) patients,
machine learning performed
suboptimally in predicting acute
brain injury in venovenous-
ECMO patients, likely due to lack
of data granularity.
PERSPECTIVE
Using machine learning, we demonstrated subop-
timal prediction of neurologic complications
such as acute brain injury (ABI) in the Extracorpo-
real Life Support Organization (ELSO) Registry.
This performance may be attributable to the
lack of data granularity in the Registry. Given the
low prevalence of ABI in the ELSO Registry, stan-
dardized neurologic monitoring protocols across
ELSO centers are imminent.

See Commentary on page XXX.
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Abbreviations and Acronyms
ABG ¼ arterial blood gas
ABI ¼ acute brain injury
AUC-ROC ¼ area under the receiver-operating

characteristic curve
CNS ¼ central nervous system
ECMO ¼ extracorporeal membrane

oxygenation
ELSO ¼ Extracorporeal Life Support

Organization
HIBI ¼ hypoxic-ischemic brain injury
ICH ¼ intracranial hemorrhage
IQR ¼ interquartile range
LOOCV ¼ leave-one-out-cross-validation
ML ¼ machine learning
NPV ¼ negative predictive value
PaCO2 ¼ partial pressure of carbon dioxide
PaO2 ¼ partial pressure of oxygen
PPV ¼ positive predictive value
SHAP ¼ Shapley additive explanations
VA ¼ venoarterial
VV ¼ venovenous
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der the receiver operating characteristic
], 0.80).7 However, currently there is a
ML to predict in-hospital mortality demonstrated good per-
formance (area un
Venovenous (VV) extracorporeal membrane oxygenation
(ECMO) is a mechanical circulatory support method for pa-
tients with respiratory failure.1 VV-ECMO is associated
with poor neurologic outcomes,2 including acute brain
injury (ABI), with central nervous system (CNS) ischemia
(ischemic stroke and hypoxic-ischemic brain injury
[HIBI]) and intracranial hemorrhage (ICH), and occurs in
approximately 5% of VV-ECMO patients.3 The overall
mortality risk in VV-ECMO patients is 36%; however,
the mortality risk in those with ischemic stroke (68% mor-
tality) and ICH (72%mortality) is even higher.3 Identifying
risk factors may help minimize their occurrence. Prior ana-
lyses of the Extracorporeal Life Support Organization
(ELSO) Registry, the largest international database of
ECMO patients with more than 200,000 cases, using logis-
tic regression showed that acidosis, hypoxemia, and coagu-
lation disturbances immediately before cannulation were
independently associated with ABI in VV-ECMO patients.3

Machine learning (ML) may be able to ascertain modifi-
able risk factors associated with ABI that might have been
undetected in prior multivariable logistic regression models
by unveiling relationships not visible using traditional
regression.4,5 Specifically, ML may be superior to tradi-
tional regression6-9 because it can ascertain both linear
and noncomplex nonlinear relationships,10 use more infor-
mation in a single model (eg, traditional regression is
limited to one covariate per 10 observations), and better
optimize and fine-tune parameters that ultimately lead to
improved model performance and validation.8,11 Data min-
ing, the concept of extracting patterns and rules from large
datasets, is central toML, as it allows for the models to learn
and trains them to future datasets.12,13 This predictive anal-
ysis feature, which allows for risk factor identification
through feature selection, is perhaps the most important
feature distinguishing it from traditional regression.
Furthermore, the ELSO Registry provides a theoretical
advantage in using ML to predict ABI owing to its large
sample size across the numerous ECMO centers worldwide
and various clinical parameters for fine-tuning, enhancing
its generalizability compared to previous studies that were
conducted in single centers and focused on a specific
ECMO indication.14,15 A previous ELSO Registry study
(n ¼ 23,182) with venoarterial (VA)-ECMO patients using

curve [AUC-ROC
dearth of studies aimed at predicting neurologic outcomes,
such as ABI, in VV-ECMO patients using ML. Here we
aimed to use ML to predict ABI and to identify associated
risk factors using the largest ELSO database of adult VV-
ECMO patients.

MATERIALS AND METHODS
Study Design and Population

This retrospective study was approved by the Johns Hopkins Hospital

Institutional Review Board with a waiver of informed consent

(IRB00216321; approved October 22, 2019). The ELSO Registry is an in-

ternational multicenter registry collecting data from 676 ECMO centers

(2009-2021) across the world.16 The Registry collects demographic infor-

mation, baseline comorbidities, hemodynamic and arterial blood gas

(ABG) data before and during ECMO support, neurologic and systemic

on-ECMO complications, and clinical outcomes, including in-hospital

mortality.17 Comorbidities were identified using International Classifica-

tion of Diseases, Tenth Revision (ICD-10) codes.

Inclusion criteria. Patients who were age �18 years and supported

with VV-ECMO between 2009 and 2021 were included. An exploratory

analysis of “conversion” ECMO patients—those who were converted
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from VA-ECMO to VV-ECMO or from VV-ECMO to VA-ECMO—was

performed.

Exclusion criteria. Repeat ECMO runs within the same patient were

excluded. Patients on VA-ECMO support were excluded.
Data Collection
Figure 1 depicts the 67 features collected for the ML pipeline. The

ELSO Registry gathers ABG and hemodynamic information before and af-

ter ECMO cannulation, defined as “pre-ECMO” and “on-ECMO” vari-

ables. Within 6 hours of ECMO cannulation, pre-ECMO ABGs were

drawn and the pre-ECMO ventilator settings were recorded. The pre-

ECMOABG closest to the start of ECMO cannulation was used if multiple

ABGs were available within the 6-hour period. The on-ECMO ABGs and

hemodynamic variables nearest to 24 hours, determined at 18 to 30 hours

postcannulation, were used as postcannulation values. A trained ELSO data

manager from each ELSO center abstracted data points that were meant to

be collected concurrently, such as oxygen saturation measured by pulse ox-

imetry versus ABG analysis. All pre-ECMO support codes—including car-

diac arrest, mechanical cardiac support, vasopressor and inotrope

infusions, bridge to transplant as an ECMO indication, patient transported
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FIGURE 1. Variables used in our machine learning pipeline to predict ABI, ra

corporeal membrane oxygenation;BP, blood pressure;PaCO2, partial pressure of

lary wedge pressure; DPAP, diastolic pulmonary arterial pressure; SaO2, arteri

mixed venous oxygen saturation; MPAP, mean pulmonary arterial pressure; F

PIP, peak inspiratory pressure; EEG, electroencephalogram.
to another ELSO center—represented conditions present within 24 hours of

ECMO initiation.

Definitions
ABI includes CNS ischemia, defined as infarction (ischemic stroke)

and/or diffuse ischemia (HIBI); intraparenchymal/extraparenchymal hem-

orrhage; intraventricular hemorrhage; seizures determined by electroen-

cephalography or clinically; and neurosurgical intervention (eg,

intracranial pressure monitor, external ventricular drain, craniotomy).

Ischemic strokewas determined by computed tomography (CT) scan, ultra-

sound, or magnetic resonance imaging. HIBI was determined by CT scan.

ICH was determined by CT scan and was defined as intraparenchymal/ex-

traparenchymal hemorrhage and/or intraventricular hemorrhage. Brain

death was captured by one of the following methods: (1) neurologic deter-

mination of death according to the Canadian Neurocritical Care Guideline;

(2) ancillary tests, including cerebral angiography and radionuclide angi-

ography, that demonstrate the absence of intracerebral blood flow; and

(3) apnea test on ECMO. The definitions for demographics, pre-ECMO

support, hemodynamics, ABGs, and systemic complications are provided

in the Appendix E1. We calculated the RESPscore as a marker of survival

based on prior literature.18
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Intra/extra Parenchymal Hemorrhage
Intraventricular Hemorrhage
Ischemia
Neurosurgical Intervention
Seizures confirmed by EEG
Seizures clinically determined

Bridge to Transplantation
Pre-ECMO Cardiac Arrest
Patient Transported on ECMO
Reason for ECMO-support is Trauma
ECMO Duration
RESPScore
Center Volume Annually

nging from demographics to on-ECMO laboratory values. ECMO, Extra-

carbon dioxide;PaO2, partial pressure of oxygen;PCWP, pulmonary capil-

al blood gas oxygen saturation; SpO2, peripheral oxygen saturation; SvO2,

iO2, fraction of inspired oxygen; PEEP, positive-end expiratory pressure;
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Outcomes
The primary outcome was ABI at any time point while on ECMO sup-

port. Secondary outcomes were CNS ischemia and ICH (subgroups of

ABI).

Statistical Analysis
Continuous variables were recorded as median and interquartile range

(IQR); categorical variables, as frequencies. The Wilcoxon rank-sum and

Pearson c2 tests were used to compare continuous and categorical vari-

ables, respectively. P < .05 was considered to indicate statistical

significance.

Data preprocessing. Categorical features were one hot–encoded

before running the ML algorithms. The default imputation method—mul-

tiple imputation—for each algorithm for Python packages such as

XGBoost and CatBoost was used for missing data (maximum <30%

missing data). All missing data are conveyed in Table E1.

ML algorithm and pipeline. We analyzed the appropriateness of

4 different ML algorithms to predict ABI from the ELSO Registry:

Random Forest, CatBoost, LightGBM, and XGBoost. Bayesian optimiza-

tion was used to split the dataset at random into a training set (70%) and a

test set (30%) based on prior literature.19 Hyperparameters were fine-tuned

for all 4 algorithms. Using the fine-tuned hyperparameters, each of the

4 ML models was fitted onto the training set and then assessed on the

test set. The top-performing model was chosen for further optimization.

We used random oversampling of patients with ABI in the training set at

varying occurrences. For each oversampling frequency, we evaluated the

model with a 10-fold cross-validation approach. Once we identified the

most ideal oversampling rate,weused the best-performingmodel on the entire

cohort, using a leave-one-out cross-validation (LOOCV) method. This

method functions by using all observations in the training set except for 1 in-

dividual observation that is reserved for use in the test set. This LOOCV step-

wise technique was repeated across the entire cohort. Each observation was

used as the test set. This method correspondingly produced N number of

models thatwere subsequently trained and then tested on the holdoutN obser-

vations. In the end, all observations were pooled to yield a combined N num-

ber of observations.We ensured the reproducibility of our results by using this

LOOCVapproach,which reduces the risk of bias by testing theML algorithm

on thewhole cohort.We then computed theAUC-ROC, the areaunder thepre-

cision recall curve, and Brier scores tomeasure the predictive performance of

each model. We also chose a cutoff that optimized the F1 score. Finally, we

calculated corresponding sensitivity, specificity, negative predictive value

(NPV), and positive predictive value (PPV).

Important Features in ML Algorithms
To provide better interpretability to the ML models, we determined

which variables were most essential for correctly predicting ABI through

feature importance scores and Shapley additive explanations (SHAP)

values. We analyzed the hierarchical feature importance in each model,

which depicts the contribution of each feature in the boosted decision trees.

The interpretation of SHAP values is described in the Appendix E1.

Feature importance scores and SHAP values allowed us to identify the

most relevant clinical features associated with each outcome. All statistical

analyses were conducted using R Studio (R 4.1.2, www.r-project.org) and

Python.
RESULTS
Of the total cohort of 37,473 VV-ECMO patients, 2644

(7.1%) experienced ABI (Figure 2). The median age of
the cohort was 48.1 years (IQR, 35.9-58.5 years), and
63% (n ¼ 23,649) were male. The median duration of
ECMO support was 9.9 days (IQR, 4.0-20.3 days).
4 JTCVS Open c - 2024
Compared to those without ABI, VV-ECMO patients with
ABI were more likely to be Asian or Hispanic, more likely
to have had pre-ECMO vasopressor infusions, and had
higher ECMO pump flow rates at 4 and 24 hours of
ECMO support (Table 1). Asian and Hispanic VV-ECMO
patients with higher pump flow rates (ie, exceeding the me-
dian of 4 L/min) had higher bicarbonate levels at 24 hours of
cannulation compared to those with lower pump flow rates
(27.0 mEq/L vs 25.5 mEq/L; P<.001). This is important,
because metabolic alkalosis and higher bicarbonate levels
are associated with more severe disease in patients with
acute respiratory failure.20

Model Performance in VV-ECMO
The model obtained an AUC-ROC of 0.70 for predicting

ABI (Table 2, Figure 3), with an accuracy of 85%. The true
positive rate, true negative rate, false positive rate, and false
negative rate were 34%, 89%, 11%, and 66%, respec-
tively. The PPVand NPV were 19% and 95%, respectively.
The precision, recall, and F1 values were 0.19, 0.34, and
0.24, respectively, and the Brier score was 0.17.

For CNS ischemia, the model obtained an AUC-ROC of
0.67 (Table 2, Figure 3) with an accuracy of 95%, a true
positive rate of 15%, true negative rate of 96%, false pos-
itive rate of 4%, and false negative rate of 85%. The PPV
and NPV were 7% and 99%, respectively. The precision,
recall, and F1 values were 0.066, 0.15, and 0.09, respec-
tively, and the Brier score was 0.14.

For ICH, the model obtained an AUC-ROC of 0.70 (Table
2, Figure 3) with an accuracy of 89%. The true positive rate,
true negative rate, false positive rate, and false negative rate
were 32%, 91%, 9%, and 68%, respectively. The PPVand
NPV were 14% and 97%, respectively. The precision,
recall, and F1 values were 0.14, 0.33, and 0.19, respectively,
and the Brier score was 0.20.

Feature Importance Scores in VV-ECMO
We identified the 3 most important features by calcu-

lating average gains in feature importance scores and pre-
sented the other significant variables (Figure 4). The top 3
features for ABI prediction were duration of ECMO, annual
center volume, and body mass index (Figure 4, A and
Figure E1, A). The median duration of ECMO for patients
with ABI was shorter versus those without ABI (9.2 days
vs 9.9 days; P ¼ .01). The median annual center volume
was higher for patients with ABI compared to those without
ABI, although the difference did not reach statistical signif-
icance (45.67 cases/year vs 43.60 cases/year; P ¼ .6). The
median body mass index for patients with ABI was slightly
higher versus those without ABI, although this difference
did not reach statistical significance (30.43 kg/m2 vs
30.11 kg/m2; P¼ .06). Other important modifiable risk fac-
tors for ABI identified by feature importance scores
included higher pre-ECMO systolic blood pressure, higher

http://www.r-project.org


48,538 additional patients excluded

35,855
10,775
919 
520
266
203

VA-ECMO
ECPR
VVA
Other
Unknown
VP

n = 90,424 Patients identified in the ELSO Registry (2009-2021)

401 non-first ECMO runs recorded were excluded

Patients with first ECMO runs onlyn = 90,023

n = 41,485 ECMO patients included in final analysis

n = 37,473 n = 4012 ConversionsVV-ECMO

FIGURE 2. Flow diagram for creation of the cohort study. ECMO, Extracorporeal membrane oxygenation; VA, venoarterial; VV, venovenous;Conversions,

VA/VVor VV/VA; ECPR, extracorporeal cardiopulmonary resuscitation; VVA, venovenoarterial; Other, mode not defined; VP, venopulmonary.
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on-ECMO partial pressure of oxygen (PaO2), and lower on-
ECMO pH (all within the top-10 most important risk fac-
tors). For predicting CNS ischemia, the top-3 features
were pre-ECMO cardiac arrest, being supported on
ECMO at an Asian Pacific ELSO center, and on-ECMO
serum lactate level (Figure 4, B and Figure E1, B). The prev-
alence of CNS ischemia was higher in patients who experi-
enced cardiac arrest before ECMO compared to those
without pre-ECMO cardiac arrest (4.4% vs 1.4%;
P<.001). The prevalence of CNS ischemia was lower in pa-
tients supported on ECMO at an Asian Pacific ELSO Center
compared to those not supported on ECMO at a North
American ELSO center (1% vs 2%; P¼ .002). The median
on-ECMO serum lactate level was higher in patients with
CNS ischemia compared to those without CNS ischemia
(3.235 mmol/L vs 2.463 mmol/L; P<.001). The top 3 vari-
ables for predicting ICH were duration of ECMO, annual
center volume, and ECMO pump flow at 24 hours
(Figure 4, C and Figure E1, C). The median duration of
ECMO was longer in patients with ICH versus those
without ICH (10.6 days vs 9.9 days; P¼ .026). The median
annual center volume was higher in those with ICH versus
those without ICH, although this difference did not reach
statistical significance (45.67 cases/year vs 43.60 cases/
year; P ¼ .29). The median ECMO pump flow rate at
24 hours was higher in those with ICH versus those without
ICH (4.220 vs 4.100; P<.001).
Sensitivity Analysis by Time Period
In sensitivity analysis of earlier years of the study period

(2009-2018; n¼ 16,832), the model obtained an AUC-ROC
of 0.67. In such an analysis of later years of the study period
(2019-2021; n¼ 20,641), the model obtained an AUC-ROC
of 0.65.
Exploratory Analysis: ML to Predict Mortality in
Patients With ABI
An additional ML model was run to predict mortality in

the subset of patients who experienced ABI. The AUC-ROC
was 0.70, and the model identified older age, lower on-
ECMO 24-hour systolic blood pressure, later year of
ECMO cannulation, and lower pre-ECMO diastolic blood
pressure as the most important risk factors for mortality in
patients with ABI.

Exploratory Analysis: Factors Associated With Pre-
ECMO Cardiac Arrest
Given that pre-ECMO cardiac arrest was the most impor-

tant modifiable risk factor for CNS ischemia, we ran
univariable analyses to identify factors associated with
pre-ECMO cardiac arrest (Table E2). Notably, patients
who experienced cardiac arrest had greater use of additional
temporary mechanical circulatory support, vasopressor and
inotropic infusions, and pre-ECMOmetabolic acidosis, hyp-
oxia/hypoxemia, hypercarbia, greater magnitude in change
of partial pressure of carbon dioxide (PaCO2) from before
to after cannulation, and lower pump flow rates compared
to patients without cardiac arrest.

Supplementary Analysis of ECMO Patients
Undergoing Modality Change
Among 4012 patients who were converted from one

ECMO modality to another (ie, conversions), 466
(11.6%) experienced ABI (Figure E2). In this cohort,
2335 patients were converted from VA-ECMO to VV-
ECMO, and 1677 were converted from VV-ECMO to
VA-ECMO. The median age of this cohort of patients
who were converted from one modality to another was
53 years (IQR, 39.2-62.4 years), and 65% (n ¼ 2618)
JTCVS Open c Volume -, Number - 5
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FIGURE 3. Receiver-operating characteristic curves (ROC) for predicting area under the receiver-operating characteristic curves (AUC) (A) acute brain

injury, (B) central nervous system (CNS) ischemia, and (C) intracranial hemorrhage in venovenous extracorporeal membrane oxygenation (VV-ECMO) and

for predicting (D) acute brain injury, (E) CNS ischemia, and (F) intracranial hemorrhage in “Conversion” patients.
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were male. The median duration of ECMO support was
9.9 days (4.9-20.3, days). Among ECMO patients who
were converted from one modality to another, those with
ABI were younger, were cannulated for longer, and had
lower pre-ECMO pH and PaCO2 compared to those without
ABI (Table E3).

Themodel obtained anAUC-ROCof 0.58with an accuracy
of 58% for ABI, an AUC-ROC was 0.57 with an accuracy of
6 JTCVS Open c - 2024
75% for CNS ischemia, and anAUC-ROC of 0.63with an ac-
curacy of 80% for ICH (Table E3). The most important fea-
tures for predicting ABI, CNS ischemia, and ICH in
conversion patients are shown in Figures E2 and E3.

DISCUSSION
This is the first study to apply tree-based ML to predict

ABI in adult respiratory failure VV-ECMO patients using



TABLE 1. Baseline characteristics and clinical variables of VV-ECMO patients stratified by presence of ABI

Characteristic/variable Total VV-ECMO (N ¼ 37,473) ABI (N ¼ 2,644, 7%) No ABI (N ¼ 34,829, 93%) P value

Demographics

Age, y, median (IQR) 48.1 (35.9-58.5) 48.1 (35.8-58.5) 48.7 (32.3-57.8) .43

Male sex, n (%) 23,649 (63) 1671 (63) 21,978 (63) .98

Body mass index, kg/m2,

median (IQR)

30.1 (25.6-36.1) 30.4 (26.3-35.8) 30.1 (25.5-36.2) .06

Race/ethnicity, n (%) <.001

Asian 3925 (10) 318 (12) 3607 (10)

Black 4150 (11) 246 (9) 3904 (11)

Hispanic 4035 (11) 363 (14) 3672 (11)

White 19,811 (53) 1320 (50) 18,491 (53)

Others 5552 (15) 397 (15) 5155 (15)

Year of ECLS, n (%)

2009 357 (1) 29 (1) 328 (1) <.001

2010 410 (1) 22 (1) 388 (1)

2011 557 (1) 43 (2) 514 (1)

2012 836 (2) 54 (2) 782 (2)

2013 1304 (3) 86 (3) 1218 (3)

2014 1777 (5) 138 (5) 1639 (5)

2015 2019 (5) 140 (5) 1879 (5)

2016 2773 (7) 178 (7) 2595 (7)

2017 3106 (8) 150 (6) 2956 (8)

2018 3693 (10) 246 (9) 3447 (10)

2019 4447 (12) 267 (10) 4180 (12)

2020 7716 (21) 611 (23) 7105 (20)

2021 8478 (23) 680 (21) 7798 (22)

Past medical history, n (%)

Diabetes 2738 (7) 208 (8) 2530 (7) .09

Hypertension 3415 (9) 277 (10) 3138 (9) .09

Atrial fibrillation 1581 (4) 115 (4) 1466 (4) .94

Cardiomyopathy 461 (1) 29 (1) 432 (1) .64

Chronic obstructive pumonary

disease

1583 (4) 111 (4) 1472 (4) .74

Pre-ECMO support, n (%)

Additional temporary

mechanical circulatory

support

899 (2) 57 (2) 842 (2) .40

Vasopressor infusions 19,439 (52) 1619 (61) 17,820 (51) <.001

Inotrope infusions 2203 (6) 158 (6) 2045 (6) .83

Pre-ECMO cardiac arrest, n (%) 2770 (7) 368 (14) 2402 (7) <.001

Pre-ECMO blood pressure

variables, median (IQR)

Systolic blood pressure,

mm Hg

110 (95-128) 110 (70-127) 110 (95-128) .27

Diastolic blood pressure,

mm Hg

60 (51-70) 59 (50-68) 60 (51-70) <.001

Mean blood pressure, mm Hg 75 (65-86) 75 (65-85) 75 (65-86) .03

Pulse pressure, mm Hg 50 (39-63) 50 (40-64) 50 (39-63) .16

Mean arterial pressure, mm Hg 22 (18-26) 22 (19-26) 22 (18-26) .002

Pre-ECMO ABG, median (IQR)

pH 7.26 (7.17-7.35) 7.23 (7.13-7.32) 7.27 (7.17-7.35) <.001

HCO3-, mEq/L 25.9 0 (21.6-31) 26 (21.1-31) 25.9 (21.6 -30.9) .91

PaO2, mm Hg 65 (53-81) 63 (51-78) 65 (53-82) <.001

PaCO2, mm Hg 58.5 (33.80-74.5) 62.2 (49.5-80) 58 (46.6-74) <.001

(Continued)
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TABLE 1. Continued

Characteristic/variable Total VV-ECMO (N ¼ 37,473) ABI (N ¼ 2,644, 7%) No ABI (N ¼ 34,829, 93%) P value

Lactate, mmol/L 1.2 (1.8-3.1) 2 (1.3-4) 1.8 (1.2-3.1) <.001

SpO2, % 90 (85-95) 90 (83-94) 90 (85-95) .002

SaO2, % 90 (83-94) 89 (81-94) 90 (83-94) <.001

On-ECMO blood pressure

variables, median (IQR)

Systolic blood pressure,

mm Hg

115 (103-129) 115 (103-129) 115 (103-128) .38

Diastolic blood pressure,

mm Hg

60 (53-68) 60 (53-68) 60 (53-67) .59

Mean blood pressure, mm Hg 76 (70-85) 76 (69-86) 76 (70-85) .64

Pulse pressure, mm Hg 55 (45-66) 55 (45-67) 55 (45-66) .14

Mean arterial pressure, mm Hg 15 (12-18) 15 (13-19) 15 (12-18) .13

On-ECMO ABG, median (IQR)

pH 7.4 (7.36-7.44) 7.4 (7.35-7.44) 7.4 (7.36-7.44) .03

HCO3, mEq/L 26 (23-30) 26 (22.5-30) 26 (23-30) .28

PaO2, mm Hg 78 (64.5-103) 75 (62-99) 78 (65-103) <.001

PaCO2, mm Hg 42.3 (37-48.2) 42 (37-48.5) 42.3 (37.1-48.1) .38

Lactate, mmol/L 1.5 (1.1-2.3) 1.6 (1.2-2.5) 1.5 (1.1-2.3) <.001

SpO2, % 96 (92-98) 95 (92-98) 96 (92-98) .006

SaO2, % 95 (92-98) 95 (92-97) 95 (92-98) .007

DPaCO2 �15 (�30 to �4) �19 (�35.2 to �6.25) �15 (�30 to �4) <.001

Pump flow rate at 4 h, L/min,

median (IQR)

4.05 (3.5-4.6) 4.05 (3.5-4.6) 4.05 (3.5-4.6) <.001

Pump flow rate at 24 h, L/min,

median (IQR)

4.1 (3.5-4.7) 4.17 (3.63-4.8) 4.1 (3.5-4.7) <.001

Days on ECMO support, median

(IQR)

9.92 (4.88-20.3) 9.17 (3.83-21.6) 9.92 (4.92-20.2) .01

Neurologic complications

on-ECMO

Composite ABI, n (%)

Composite ischemia 610 (2) 610 (23) 0 (0) <.001

Hypoxic-ischemic brain

injury

139 (1) 139 (5) 0 (0) <.001

Ischemic stroke 478 (1) 478 (18) 0 (0) <.001

Composite ICH 1591 (4) 1591 (60) 0 (0) <.001

Intra/extraparenchymal

hemorrhage

745 (2) 745 (28) 0 (0) <.001

Intraventricular

hemorrhage

306 (1) 306 (12) 0 (0) <.001

Brain death 462 (1) 462 (17) 0 (0) <.001

Neurosurgical intervention 37 (1) 37 (1) 0 (0) <.001

Seizures confirmed by EEG 107 (1) 107 (4) 0 (0) <.001

Seizures clinically

determined

249 (1) 249 (9) 0 (0) <.001

Other complications on-ECMO,

n (%)

ECMO circuit mechanical

failure

8724 (23) 660 (25) 8064 (23) .03

Renal replacement therapy 9215 (25) 933 (35) 8282 (24) <.001

Hemolysis 1772 (5) 188 (7) 1584 (5) <.001

Cardiac arrhythmia 2778 (7) 281 (11) 2497 (7) <.001

Gastrointestinal hemorrhage 1954 (5) 189 (7) 1765 (5) <.001

Outcomes, n (%)

In-hospital mortality 15,074 (40) 2088 (79) 12,986 (37) <.001

Bold type indicates significance. VV-ECMO, Venovenous extracorporeal membrane oxygenation; ABI, acute brain injury; IQR, interquartile range; ECLS, extracorporeal life

support; ABG, arterial blood gas; ICH, intracranial hemorrhage; EEG, electroencephalography.
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TABLE 2. Model performance in VV-ECMO patients for predicting ABI, CNS ischemia, and ICH

Complication AUC-ROC Acc, % TPR, % TNR, % FPR, % FNR, % PPV, % NPV, % Precision Recall F1 Brier score

ABI 0.70 85 34 89 11 66 19 95 0.19 0.34 0.24 0.17

CNS ischemia 0.67 95 15 96 4 85 7 99 0.066 0.15 0.09 0.14

ICH 0.70 89 32 91 9 68 14 97 0.14 0.33 0.19 0.20

VV-ECMO, Venovenous extracorporeal membrane oxygenation; ABI, acute brain injury; CNS, central nervous system; ICH, intracranial hemorrhage; AUC-ROC, area under the

receiver-operating characteristic curve; Acc, accuracy; TPR, true positive rate; TNR, true negative rate; FPR, false-positive rate; FNR, false-negative rate; PPV, positive predictive

value; NPV, negative predictive value.

Kalra et al Mechanical Circulatory Support
a large, international multicenter database (the ELSO Reg-
istry) over a substantial period encompassing 2 respiratory
virus pandemics (2009-2021). ML predicted ABI with an
AUC-ROC of 0.70 and we identified several important clin-
ical risk factors for ABI and its subtypes, including center
volume, pre-ECMO cardiac arrest, longer duration of
ECMO, higher ECMO pump flow rate, and higher on-
ECMO serum lactate level (Figure 5).
Novelty of ML and the ELSO Registry
Theoretically, ML allows for the appropriate analysis of

exceedingly large datasets, improving the efficiency and ac-
curacy of prediction as the model develops more experi-
ence.4,5 ML also facilitates an environment for
recognizing new patterns and integrating data in a fashion
that humans may be unable to achieve.4 These ML methods
facilitate an innovative way to look at different outcomes in
a statistical model. They are powerful and accurate and
demonstrate some interpretability of the output through
feature importance scores. There also are key differences
among the various ML models the we used. For example,
while gradient boosting (XGBoost, CatBoost, and
LightGBM) works sequentially and uses intuition to make
a strong predictive model,21 Random Forest is constructed
in a completely independent fashion by amalgamating mul-
tiple decision trees into one final uniform model.22 There-
fore, XGBoost takes a more rigid, fixed-order approach,
while Random Forest has greater flexibility. Boosting
methods also have certain key differences. For example,
CatBoost produces models iteratively, suggesting that
each decision tree improves based on the prior decision
tree, while LightGBM splits observations into bins and is
known to generate output at a much faster pace than
CatBoost.

Our use of the ELSO Registry allows us to generalize our
results to a global population across multiple continents
(North America, Europe, Asia, Pacific Islands, Latin Amer-
ica, Southwest Asia, and Africa) with an eclectic cohort of
respiratory failure patients receiving VV-ECMO support
from various ELSO centers. This allowed us to improve
on various studies in ECMO populations using ML that
were from a single center, had a small sample size, and/or
capture only one specific ECMO indication.14,23,24 Our
study captured patients from over a decade, which may
further contribute to the generalizability and real-world val-
idity of our model. Furthermore, although a previous ELSO
Registry study of 23,182 VA-ECMO patients demonstrated
that ML was able to predict survival with an AUC-ROC of
0.80,7 it should be noted that assessing mortality is a less
complex outcome to discern than ABI, which
requires central adjudication and standardization of
clinical practice, a limitation of the ELSO Registry dataset.
Accordingly, ABI likely is underestimated in the ELSO
Registry.

VV-ECMO Risk Factors for ABI
We identified cardiac arrest occurring 6 hours before

ECMO support as the most important risk factor for CNS
ischemia. Longer duration of ECMO support was associated
with a lower risk of ABI but a higher risk of its subtype ICH.
Although cardiac arrest–related brain injury occurs hyper-
acutely, acute imaging and postarrest neurologic care remain
critical for these patients. This includes conducting neuro-
logic monitoring for secondary brain injury as recommended
in a 2024 joint collaborative guideline of the American Heart
Association and Neurocritical Care Society.25

Although cardiac arrest is a known risk factor,26,27 the
literature on the association between ECMO duration and
ABI is lacking. The lower risk of ABI with shorter duration
of ECMO may reflect selection bias of the subset of ECMO
patients who underwent the decision to limit life-sustaining
therapies in the setting of severe ABI or those patients who
died directly from ABI and thus received a shorter duration
of ECMO support. Finally, patients receiving ECMO at
higher-volume centers were more likely to experience
ABI and its subtypes, which may reflect a greater potential
to cannulate sicker patients or an increased ability for these
higher-volume centers to successfully detect ABI compared
to ELSO centers across the world. This result also may
reflect different practices for detecting ABI across different
continents, which warrants further investigation.

Need for Standardized Neuromonitoring
The prevalence of ABI in both the VV-ECMO and con-

version cohorts was relatively low in the ELSO Registry,
which is in line with a previous ELSO Registry study of
VA-ECMO patients that also used machine learning to pre-
dict ABI and observed poor model performance.19 Notably,
JTCVS Open c Volume -, Number - 9



Acute Brain Injury
Feature Importance

ECMO duration
Center Volume Annually

Body Mass Index
ECMO Pump Flow at 24h

Age
Pre-ECMO SBP

HCO3 at 24h
PaO2 at 24h

pH at 24h
Pre-ECMO HCO3

ECMO Pump Flow at 4h
Pre-ECMO pH

Pre-ECMO PaO2
Pre-ECMO PaCO2
On-ECMO PaCO2

Pre-ECMO Vent Rate
SBP at 24h

Pre-ECMO Lactate
Mean BP at 24h

DBP at 24h
Pre-ECMO DBP
Pre-ECMO PIP

Pre-ECMO Mean BP
PIP at 24h

Pre-ECMO PEEP
Pre-ECMO Lactate

PEEP at 24h
Pre-ECMO SaO2

RESPScore
Pre-ECMO Mean AP

Mean AP at 24h
Vent Rate at 24h

SvO2 at 24h
Year on ECMO

FiO2 at 24h
SaO2 at 24h

Pre-ECMO SpO2

Patient Transported
Pre-ECMO FiO2

SpO2 at 24h
Pre-ECMO Cardiac Arrest

Transplant
Asian Race/Ethnicity

Pre-ECMO CI
Asia Pacific Chapter

Cl at 24h
Pre-ECMO SPAP

Black Race/Ethnicity
Latin American Chapter

Handbagging at 24h

0 200 400 600 800 1000 1200 1400
Average GainA

FIGURE 4. Most important features for each neurological outcome: (A) acute brain injury, (B) central nervous system ischemia, and (C) intracranial hem-

orrhage in VV-ECMO patients. ECMO, Extracorporeal membrane oxygenation; SBP, systolic blood pressure; PaO2, partial pressure of oxygen; PaCO2,

partial pressure of carbon dioxide; BP, blood pressure; DBP, diastolic blood pressure; PIP, peak inspiratory pressure; PEEP, positive-end expiratory pres-

sure; SaO2, arterial blood gas oxygen saturation; SpO2, peripheral oxygen saturation; CI, cardiac index; SPAP, systolic pulmonary arterial pressure; AP,

arterial pressure; Vent, ventilator; BMI, body mass index; DPAP, diastolic pulmonary arterial pressure.
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Central Nervous System Ischemia
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FIGURE 4. (Continued).
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our models demonstrated low PPV but high NPV for ABI
and its subtypes in both cohorts. Although the ELSO Reg-
istry includes the largest cohort of ECMO patients avail-
able, data gathered from hundreds of different ECMO
centers resulted in a heterogeneous cohort, especially with
the varied methodologies used to detect ABI across centers.
In a prior study, noninvasive standardized neuromonitoring
detected ABI in up to 33% of VA-ECMO patients,28 but this
methodology has not been implemented by all ECMO cen-
ters. Centers implementing standardized neuromonitoring
JTCVS Open c Volume -, Number - 11



Intracranial Hemorrhage
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0 100 200 300 400 500 600 700 800
Average Gain

ECMO Duration
Center Volume Annually

ECMO Pump Flow at 24h
Age

Body Mass Index
Pre-ECMO Vent Rate

Pre-ECMO DBP
Pre-ECMO pH

ECMO Pump Flow at 4h
Pre-ECMO PaCO2
Pre-ECMO HCO3

HCO3 at 24h
Pre-ECMO PaO2
Pre-ECMO SBP

PaO2 at 24h
pH at 24h

PaCO2 at 24h
PIP at 24h

SBP at 24h
Patient Transported

Lactate at 24h
PEEP at 24h

Pre-ECMO Mean BP
Pre-ECMO PEEP

RESPScore
Mean AP at 24h

DBP at 24h
Transplant

Mean BP at 24h
Year on ECMO

Vent Rate at 24h
SvO2 at 24h

Pre-ECMO PIP
FiO2 at 24h

Pre-ECMO Lactate
DPAP at 24h

Black Race/Ethnicity
SaO2 at 24h

Pre-ECMO FiO2
Asian Race/Ethnicity
Pre-ECMO Mean AP

Pre-ECMO SaO2
SpO2 at 24h

Hispanic Race/Ethnicity
Pre-ECMO SpO2

MPAP at 24h
Trauma

White Race/Ethnicity
North American Chapter

Pre-ECMO SvO2

C
FIGURE 4. (Continued).

Mechanical Circulatory Support Kalra et al
have been shown to detect ABI at a higher prevalence, in
10%29 and 16%30 of VV-ECMO patients. This is supported
by a single-center pediatric ECMO study of 68 VV-ECMO
patients and 106 VA-ECMO patients that demonstrated a
high prevalence of ABI (51%) when standardized
12 JTCVS Open c - 2024
neuromonitoring with neuroimaging protocol was imple-
mented.31 This study also used artificial intelligence to pre-
dict ABI primarily in VA-ECMO patients and demonstrated
a better AUC-ROC (0.76)31 versus our AUC-ROC with the
ELSO Registry (0.70 in VV-ECMO patients).



Utilizing Machine Learning to Predict Neurological Injury in Venovenous Extracorporeal Membrane
Oxygenation Patients: An Extracorporeal Life Support Organization Registry Analysis

STUDY POPULATION
Adult VV-ECMO patients (first-

runs only) from the ELSO
Registry

37,473 total VV-ECMO
patients: 2644 (7.1%) with

acute brain injury

This is the largest study of VV-ECMO patients to use ML to predict acute brain injury. Performance was sub-optimal
due to lack data granularity in the ELSO Registry. Standardized neurological monitoring and imaging protocols are
needed to better detect acute brain injury at ECMO centers.

AUC: area under the receiver-operating characteristic curve; CNS: central nervous system; ELSO: Extracorporeal Life
Support Organization; ROC: receiver-operating characteristic curve; VV-ECMO: venovenous extracorporeal membrane
oxygenation.
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FIGURE 5. Summary of our study’s findings demonstrating the performance of machine learning to predict acute brain injury and its subtypes in patients

receiving venovenous extracorporeal membrane oxygenation. Overall, the performance of the models was sub-optimal (area under the receiver-operating

characteristic curve of 0.70, 0.67, and 0.70 for acute brain injury, central nervous system ischemia, and intracranial hemorrhage, respectively). Standardized

neurological monitoring and imaging protocols are recommended to accurately diagnose acute brain injury across all Extracorporeal Life Support Orga-

nization centers.
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Our model’s performance in predicting ABI also was
inferior to that of studies using ML to predict survival in
single-center studies (AUC ¼ 0.92,14 0.82,32 and 0.8533)
and the ELSO Registry (0.80),7 likely because mortality
is a less complex outcome to discern with ML. Notably,
in the training set, the SAVE score developed using the
ELSO Registry achieved an AUC of 0.65, which is much
closer to our model’s performance and may reflect the
lack of granularity and great heterogeneity in data collec-
tion within the ELSO Registry, as external validation of
the SAVE score in 161 patients from a single continent ex-
hibited great accuracy (AUC ¼ 0.90).34 Similarly, the RE-
SPscore for VV-ECMO patients demonstrated similar
performance (AUC ¼ 0.74 in the ELSO Registry and 0.92
in an independent test set of 140 patients).18 Both studies
suggest that our current ML models may perform better in
smaller independent test sets and thus warrant external vali-
dation with the exact same variables used in the ELSO
Registry.

If ABI were reliably predicted soon after VV-ECMO
initiation, given the modifiable risk factors associated
with pre-ECMO cardiac arrest, actionable steps for
ECMO clinicians could include modifying vasopressor/ino-
trope35,36 and left ventricle venting use,37,38 enhancing pul-
satile ECMO flow39 to improve hemodynamic stability and
decrease pulmonary blood flow, giving bicarbonate to
reverse metabolic acidosis, giving supplemental oxygen
(as hypoxemia is frequently documented in ECMO pa-
tients),36,40,41 increasing ventilation rate or tidal volume
to decrease PaCO2, and fine-tuning ECMO settings such
as ECMO pump flow rates. Overall, given the low detection
rate of ABI across ELSO centers, standardized neuromoni-
toring is imminently needed to accurately detect this devas-
tating and important outcome.

Limitations
Our study has several limitationst starting with its retro-

spective and observational nature, precluding assessment
of causative effects. Second, the prevalence of ABI was
low in the ELSO Registry, likely due to a lack of standard-
ized noninvasive neurologic monitoring protocols across all
ECMO centers. Third, owing to high heterogeneity in the
JTCVS Open c Volume -, Number - 13
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data, we limited our analysis to the variables that were most
essential overall using feature importance scores. Neverthe-
less, we were able to identify novel and highly important
features for ABI that prior regression modeling was unable
to perceive in the ELSO Registry, and we determined the di-
rection of these features by examining the prevalence of
ABI in the raw data. Fourth, because pre-ECMO and on-
ECMO hemodynamics and ABGs were collected only at
a single time point, we were unable to assess multiple
time points for these important laboratory values in our
ML models. However, whether these laboratory values
would change substantially throughout the ECMO run or
in the hours prior to cannulation is unclear. Nevertheless,
real-time continuous data entered into these ML models
may serve as a more dynamic risk factor during events in
the first 24, 48, and 72 hours and thus potentially could bet-
ter predict outcomes. Fifth, anticoagulation is a known risk
factor for ICH in VV-ECMO patients, but we could not cap-
ture this feature in the ELSO Registry. Sixth, other neuro-
logic outcomes, such as Cerebral Performance Category
score or other markers of neurocognitive dysfunction and
delirium, were not captured by the ELSO Registry. Seventh,
given the high statistical power of the ELSO Registry, the
statistically significant associations between certain vari-
ables (eg, pre-ECMO PaO2 was 63 mm Hg for VV-
ECMO patients with ABI vs 65 mm Hg for VV-ECMO
patients without ABI; P<.001) might not be clinically sig-
nificant and require further investigation. Finally, we did not
externally validate our findings with an independent data-
set, which is warranted in the future with granular data.

CONCLUSIONS
This is the first study using ML to predict ABI in a large

cohort of VV-ECMO patients. However, its performance
was suboptimal, likely due to lack of data granularity in
the ELSO Registry. We identified cardiac arrest at 6 hours
before ECMO cannulation as the most important risk factor
for ABI, while longer duration of ECMO support and
ECMO as a bridge to transplantation as an indication for
ECMO were associated with lower risk of ABI in
VV-ECMO patients. Given the underestimated prevalence
of ABI in the ELSO Registry, standardized neuromonitor-
ing is important across ECMO centers to accurately detect
this important neurological outcome.
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FIGURE E1. Shapley additive explanations (SHAP) value plots for acute brain injury (A), central nervous system ischemia (B), and intracranial hemor-

rhage in venovenous extracorporeal membrane oxygenation patients (C). ECMO, Extracorporeal membrane oxygenation; PEEP, positive-end expiratory

pressure; PaO2, partial pressure of oxygen; PIP, peak inspiratory pressure; FiO2, fraction of inspired oxygen; AP, Arterial pressure; SaO2, arterial blood

gas oxygen saturation; DBP, diastolic blood pressure; Vent, ventilator.
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FIGURE E2. The most important features of each neurologic outcome. A, Acute brain injury. B, Central nervous system ischemia. C, Intracranial hem-

orrhage in conversion patients. ECMO, Extracorporeal membrane oxygenation; PaCO2, partial pressure of carbon dioxide;PaO2, partial pressure of oxygen;

BP, blood pressure;AP, Arterial pressure;PIP, peak inspiratory pressure; SaO2, arterial blood gas oxygen saturation;PEEP, positive-end expiratory pressure;
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FIGURE E3. Shapley additive explanations (SHAP) value plots for acute brain injury (A), central nervous system ischemia (B), and intracranial hemor-

rhage (C) in conversion patients. ECMO, Extracorporeal membrane oxygenation; PaO2, partial pressure of oxygen; BP, blood pressure; SaO2, arterial blood

gas oxygen saturation; PaCO2, partial pressure of carbon dioxide; SvO2, mixed venous oxygen saturation; Vent, ventilator;DPAP, diastolic pulmonary arte-

rial pressure; FiO2, fraction of inspired oxygen; MPAP, mean pulmonary arterial pressure.
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TABLE E1. Variables with missingness in the ELSO Registry for all adult ECMO patients between 2009 and 2021

Variable Missing X, %

Pulmonary capillary wedge pressure at 24 h 87,017 99

Pre-ECMO pulmonary capillary wedge pressure 86,774 98

Pre-ECMO cardiac index 82,670 94

Cardiac index at 24 h 81,750 93

Pre-ECMO mean pulmonary arterial pressure 80,178 91

Pre-ECMO mixed venous oxygen saturation 79,730 90

Pre-ECMO diastolic pulmonary arterial pressure 78,978 90

Pre-ECMO systolic pulmonary arterial pressure 78,845 89

Mixed venous oxygen saturation at 24 h 76,111 86

Diastolic pulmonary arterial pressure at 24 h 75,479 86

Systolic pulmonary arterial pressure at 24 h 75,388 86

Mixed venous oxygen saturation at 24 h 66,204 75

Pre-ECMO peripheral oxyhemoglobin saturation 65,314 74

Peripheral oxyhemoglobin saturation at 24 h 60,599 69

Pre-ECMO mean airway pressure 56,242 64

Pre-ECMO lactate 53,670 61

Lactate at 24 h 48,005 54

Time to extubation 47,511 54

Pre-ECMO peak inspiratory pressure 45,232 51

Mean airway pressure at 24 h 43,657 50

Pre-ECMO positive end-expiratory pressure 34,613 39

Pre-ECMO mean blood pressure 34,500 39

Pre-ECMO ventilation rate 34,263 39

Peak inspiratory pressure at 24 h 32,346 37

Pre-ECMO arterial oxyhemoglobin saturation 32,126 36

Patient being transported to ELSO center 31,678 36

Pre-ECMO percentage of inspired oxygen 28,816 33

Height 26,604 30

Pre-ECMO diastolic blood pressure 26,570 30

Pre-ECMO systolic blood pressure 26,270 30

Arterial oxyhemoglobin saturation at 24 h 24,642 28

Mean blood pressure at 24 h 24,149 27

Pre-ECMO serum bicarbonate 23,588 27

Pre-ECMO partial pressure of oxygen 22,914 26

Pre-ECMO partial pressure of çarbon dioxide 22,713 26

Ventilation rate at 24 h 22,255 25

Positive end-expiratory pressure at 24 h 21,837 25

Diastolic blood pressure at 24 h 20,687 23

Pre-ECMO pH 20,641 23

Systolic blood pressure at 24 h 20,582 23

Percentage of inspired oxygen at 24 h 20,430 23

Partial pressure of oxygen at 24 h 17,543 20

Partial pressure of çarbon dioxide at 24 h 17,432 20

Serum bicarbonate at 24 h 16,402 19

(Continued)
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TABLE E1. Continued

Variable Missing X, %

ECMO pump flow rate at 24 h 15,935 18

pH at 24 h 15,283 17

Time to intubation 14,839 17

ECMO pump flow rate at 4 h 11,937 14

Weight 3116 4

ECMO duration 78 0

Patient ID 0 0

Run ID 0 0

Run number 0 0

Sex 0 0

Race/ethnicity 0 0

Age 0 0

Primary diagnosis by ICD-10 0 0

Primary diagnosis by ICD-9 0 0

ECMO modality 0 0

Support type 0 0

Discontinuation of ECMO 0 0

Discharged alive off of ECMO 0 0

Discharge location 0 0

Year on ECMO 0 0

Pre-ECMO ventilation type 0 0

Pre-ECMO handbagging 0 0

Vent type at 24 h 0 0

Handbagging at 24 h 0 0

Pre-ECMO cardiac arrest 0 0

Bridged to transplant as indication for ECMO 0 0

ID of ELSO center 0 0

Continent of chapter name 0 0

Trauma as indication for ECMO 0 0

Placement of artificial airway during ECMO 0 0

ELSO, Extracorporeal Life Support Organization; ECMO, extracorporeal membrane oxygenation; ICD, International Classification of Diseases.
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TABLE E2. Baseline characteristics and clinical variables of conversion ECMO patients stratified by presence of ABI

Characteristic Total conversions (N ¼ 4012) ABI (N ¼ 466; 11%) No ABI (N ¼ 3546; 89%) P value

Demographics

Age, y, median (IQR) 53 (39.2-62.4) 50.4 (37-59.9) 53.3 (39.7-62.8) .001

Male sex, n (%) 2619 (65) 290 (62) 2329 (66) .14

Body mass index, kg/m2, median (IQR) 29.3 (25.1-34.7) 29.9 (26.2-35) 29.3 (25-34.7) .09

Race/ethnicity, n (%) .93

Asian 358 (9) 42 (9) 316 (9)

Black 459 (11) 55 (12) 404 (11)

Hispanic 347 (9) 37 (8) 310 (9)

White 2294 (57) 272 (58) 2022 (57)

Others

Year of ECLS, n (%) .21

2009 42 (1) 5 (1) 37 (1)

2010 40 (1) 8 (2) 32 (1)

2011 40 (1) 6 (1) 34 (1)

2012 49 (1) 11 (2) 38 (1)

2013 67 (2) 6 (1) 61 (2)

2014 112 (3) 13 (3) 99 (3)

2015 131 (3) 10 (2) 121 (3)

2016 132 (3) 14 (3) 118 (3)

2017 320 (8) 41 (9) 279 (8)

2018 571 (14) 61 (13) 510 (14)

2019 875 (22) 99 (21) 776 (22)

2020 753 (19) 77 (17) 676 (19)

2021 880 (22) 115 (25) 765 (22)

Past medical history, n (%)

Diabetes 341 (8) 40 (9) 301 (8) .95

Hypertension 472 (12) 50 (11) 422 (12) .51

Atrial fibrillation 372 (9) 33 (7) 339 (10) .12

Cardiomyopathy 254 (6) 24 (5) 230 (6) .32

Chronic obstructive pulmonary disease 154 (4) 15 (3) 139 (4) .51

Pre-ECMO support, n (%)

Additional temporary mechanical circulatory support 744 (19) 75 (16) 669 (19) .15

Vasopressor infusions 2474 (62) 279 (60) 2195 (62) .4

Inotrope infusions 868 (22) 77 (17) 791 (22) .004

Pre-ECMO blood pressure variables, median (IQR)

Systolic blood pressure, mm Hg 96 (80-115) 96 (77.5-115) 96 (80-115) .58

Diastolic blood pressure, mm Hg 57 (47-67) 57 (46-66) 57 (47-67) .73

Mean blood pressure, mm Hg 69 (58-81) 68 (57-81) 70 (58.3-81) .32

Pulse pressure, mm Hg 39 (26-54) 39 (25-53) 39 (27-54) .93

Mean arterial pressure, mm Hg 18 (14-24) 18 (12.5-24) 18 (14-24) .79

Pre-ECMO ABG values, median (IQR)

pH 7.26 (7.15-7.35) 7.24 (7.11-7.33) 7.26 (7.16-7.35) .004

HCO3-,mEq/L 22 (18-26.1) 22 (17.2-26.4) 22 (18.1-26.1) .14

PaO2, mm Hg 71 (54-115) 66 (51-109.5) 72 (54-116) .01

PaCO2, mm Hg 50.8 (40-65) 52 (40.9-66) 50.3 (40-65) .22

Lactate, mmol/L 2 (4.4-8.3) 2.2 (5.15-9.7) 1.9 (4.3-8.2) .05

SpO2, % 92 (84-98) 90 (83-96.5) 92 (84-98) .21

SaO2, % 91 (82-100) 89 (78-97) 91 (82-100) .017

On-ECMO blood pressure variables, median (IQR)

Systolic blood pressure, mm Hg 100 (87-116) 99 (85-116) 100 (87-116) .29

Diastolic blood pressure, mm Hg 63 (56-71) 64 (56-70) 63 (56-71) .91

Mean blood pressure, mm Hg 74 (68-82) 75 (68-81) 74 (68-83) .41

Pulse pressure, mm Hg 38 (22-53) 36 (19-51) 38 (23-53) .18

(Continued)
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TABLE E2. Continued

Characteristic Total conversions (N ¼ 4012) ABI (N ¼ 466; 11%) No ABI (N ¼ 3546; 89%) P value

Mean arterial pressure, mm Hg 14 (12-17) 14 (11-17.3) 14 (12-17) .66

On-ECMO ABG values, median (IQR)

pH 7.41 (7.36-7.45) 7.4 (7.36-7.45) 7.41 (7.37-7.46) .03

HCO3-, mEq/L 25 (22-28.2) 24.9 (21.9-28.4) 25 (22-28.2) .47

PaO2, mm Hg 104 (71-193) 105 (68.9-239) 104 (71-191) .84

PaCO2, mm Hg 39.8 (35-45) 40 (35-46) 39.8 (35-44.9) .23

Lactate, mmol/L 2.3 (1.4-4.5) 2.8 (1.6-6.1) 2.3 (1.4-4.3) <.001

SpO2, % 98 (94-100) 98 (94-99) 98 (94-100) .37

SaO2, % 97 (94-99) 97 (93-99) 97 (94-99) .51

DPaCO2, median (IQR) �10 (�24 to 0) �10.65 (�24 to 0) �10 (�24 to 0) .77

Pump flow rate at 4 h, L/min, median (IQR) 4 (3.4-4.6) 4.1 (3.4-4.7) 4 (3.4-4.6) .13

Pump flow rate at 24 h, L/min, median (IQR) 4.2 (3.6-4.8) 4.2 (3.5-4.9) 4.2 (3.6-4.8) .64

Days on ECMO support 11.3 (6-20.8) 12.8 (6.12-24.6) 11.1 (6-20.3) .003

Neurologic complications on-ECMO, n (%)

Composite ABI, n (%)

Composite Ischemia 210 (5) 210 (45) 0 (0) <.001

Hypoxic-ischemic brain injury 54 (1) 54 (12) 0 (0) <.001

Ischemic stroke 158 (4) 158 (34) 0 (0) <.001

Composite ICH 204 (5) 204 (44) 0 (0) <.001

Intra/extraparenchymal hemorrhage 100 (2) 100 (21) 0 (0) <.001

Intraventricular hemorrhage 43 (1) 43 (9) 0 (0) <.001

Brain death 71 (2) 71 (15) 0 (0) <.001

Neurosurgical intervention 5 (1) 5 (1) 0 (0) <.001

Seizures confirmed by EEG 19 (1) 19 (4) 0 (0) <.001

Seizures clinically determined 37 (1) 37 (8) 0 (0) <.001

Other complications on-ECMO, n (%)

ECMO circuit mechanical failure 1271 (32) 187 (40) 1084 (31) <.001

Renal replacement therapy 1771 (44) 236 (51) 1535 (43) .002

Hemolysis 400 (10) 78 (17) 322 (9) <.001

Cardiac arrhythmia 785 (20) 107 (23) 678 (19) .049

Gastrointestinal hemorrhage 332 (8) 52 (11) 280 (8) .02

Outcomes, n (%)

In-hospital mortality 2328 (58) 364 (78) 1964 (55) <.001

Conversions: ECMO modality changed from VA-ECMO to VV-ECMO or from VV-ECMO to VA-ECMO. Bold type indicates significance. VV-ECMO, Venovenous extracor-

poreal membrane oxygenation; ABI, acute brain injury; IQR, interquartile range; ECLS, extracorporeal life support; ABG, arterial blood gas; ICH, intracranial hemorrhage; EEG,

electroencephalography; VA-ECMO, venoarterial extracorporeal membrane oxygenation.

TABLE E3. Model performance in conversion patients for predicting ABI, CNS ischemia, and ICH

Complication AUC-ROC Acc, % TPR, % TNR, % FPR, % FNR, % PPV, % NPV, % Precision Recall F1 Brier score

ABI 0.58 58 55 59 41 45 15 91 0.15 0.55 0.23 0.15

CNS ischemia 0.57 75 35 77 23 65 8 96 0.8 0.35 0.13 0.08

ICH 0.63 80 36 82 18 64 10 96 0.099 0.37 0.16 0.22

ABI, Acute brain injury; CNS, central nervous system; ICH, intracranial hemorrhage; AUC-ROC, area under the receiver-operating characteristic curve; Acc, accuracy; TPR, true

positive rate; TNR, true negative rate; FPR, false-positive rate; FNR, false-negative rate; PPV, positive predictive value; NPV, negative predictive value.
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