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Abstract

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder with one of the most complex
pathogeneses, making effective and clinically actionable decision support difficult. The objective of this
study was to develop a novel multimodal deep learning framework to aid medical professionals in AD
diagnosis. We present a Multimodal Alzheimer’s Disease Diagnosis framework (MADDi) to accurately
detect the presence of AD and mild cognitive impairment (MCI) from imaging, genetic, and clinical data.
MADDi is novel in that we use cross-modal attention, which captures interactions between modalities -
a method not previously explored in this domain. We perform multi-class classification, a challenging
task considering the strong similarities between MCI and AD. We compare with previous state-of-the-
art models, evaluate the importance of attention, and examine the contribution of each modality to the
model’s performance. MADDi classifies MCI, AD, and controls with 96.88% accuracy on a held-out
test set. When examining the contribution of different attention schemes, we found that the combination
of cross-modal attention with self-attention performed the best, and no attention layers in the model
performed the worst, with a 7.9% difference in F1-Scores. Our experiments underlined the importance
of structured clinical data to help machine learning models contextualize and interpret the remaining
modalities. Extensive ablation studies showed that any multimodal mixture of input features without
access to structured clinical information suffered marked performance losses. This study demonstrates
the merit of combining multiple input modalities via cross-modal attention to deliver highly accurate AD
diagnostic decision support.

Available at: https://github.com/rsinghlab/MADDi

1 Introduction

1.1 Background and Significance

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder affecting approximately 5.5
million people in the United States and 44 million people worldwide [1]. Despite extensive research and
advances in clinical practice, less than 50% of AD patients are diagnosed accurately for pathology and
disease progression based on clinical symptoms alone[2]. The pathology of the disease occurs several years
before the onset of clinical symptoms, making the disease difficult to detect at an early stage [3]. Mild
cognitive impairment (MCI) is considered an AD prodromal phase, where the gradual change from MCI to
AD can take years to decades [4]. As AD cannot currently be cured, but only delayed in progression, early
detection of MCI before irreversible brain damage occurs is crucial for preventive care.

The urgent need for clinical advancement in AD diagnosis inspired the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) to collect diverse data such as imaging, biological markers, and clinical assessment on
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MCI and AD patients [5]. Such distinct data inputs are often referred to as individual modalities; a research
problem is characterized as multimodal when it considers multiple such modalities and unimodal when it
includes just one. Thanks to data collection efforts such as the one spearheaded by ADNI, it became possible
to create unimodal machine learning models capable of aiding AD diagnosis, most commonly using imaging
data [6–10], or clinical records [11, 12]. Recently, deep learning (DL) has shown considerable potential for
clinical decision support and outperformed traditional unimodal machine learning methods in AD detection
[13–15]. The major strength of DL over traditional machine learning models is the ability to process large
numbers of parameters and effectively learn meaningful connections between features and labels. Even with
DL’s advantage, single-modality input is often insufficient to support clinical decision-making [16].

Alzheimer’s Disease diagnosis is multimodal in nature - health care providers examine patient records,
neurological exams, genetic history, and various imaging scans. Integrating multiple such inputs provides
a more comprehensive view of the disease. Thus, several deep learning-based multimodal studies [17–20]
have leveraged the richer information encoded in multimodal data. Despite an overall convincing perfor-
mance, they all miss a crucial component of multimodal learning - cross-modal interactions. The existing
methods simply concatenate features extracted from the different modalities to combine their information,
limiting the model’s ability to learn a shared representation [21]. In response, we propose a novel Multi-
modal Alzheimer’s Disease Diagnosis framework (MADDi), which uses a cross-modal attention scheme
[22] to integrate imaging (magnetic resonance imaging (MRI)), genetic (single nucleotide polymorphisms
(SNPs)), and structured clinical data to classify patients into control (CN), MCI, and AD groups.

Many successful studies were conducted using the ADNI dataset [5]. Only a small subset of them used
multimodal data, and an even smaller subset attempted three-class classification. In this work, we propose
to use attention as a vehicle for cross-modality interactions. We show state-of-the-art performance on the
challenging multimodal three-class classification task, achieving 96.88% average test accuracy across 5
random model initializations. Next, we investigated the contribution of each modality to the overall model.
While for unimodal models, images produced the most robust results (92.28% accuracy), when we combined
all three data inputs, we found that the clinical modality complements learning the best. Lastly, since our
method utilizes two different types of neural network attention, we investigated the contribution of each type
and found significant performance improvements when using attention layers over no attention. Through
our experiments, we were able to highlight the importance of capturing interactions between modalities.

2 Methods and Materials

2.1 Data Description

The data used in this study were obtained from the ADNI database (https://adni.loni.usc.edu/),
which provides imaging, clinical, and genetic data for over 2220 patients spanning four studies (ADNI1,
ADNI2, ADNI GO, and ADNI3). The primary goal of ADNI has been to test whether combining such
data can help measure the progression of MCI and AD. Our study follows the common practice of using
patient information from only ADNI1, 2, and GO, since ADNI 3 is still an ongoing study expected to
conclude in 2022. To capture a diverse range of modalities, we focused on patients with imaging, genetic,
and clinical data available. We trained unimodal models on the full number of participants per modality. For
our multimodal architecture, we only used those patients that had all three modalities recorded (referred to
as the overlap dataset). The number of participants in each group is detailed in Table 1.

2

https://adni.loni.usc.edu/


Table 1: Number of participants in each modality and their diagnosis. This table shows the number of
participants in each modality and further separates the participants into their diagnoses. The Overlap section
refers to patients that had all three modalities recorded.

Total Participants Control Mild Cognitive Impairment Alzheimer’s Disease
Clinical 2384 942 796 646
Imaging 551 278 123 150
Genetic 805 241 318 246
Overlap 239 165 39 35

2.1.1 Ground Truth Labels

Since ADNI’s launch in 2003, more participants have been added to each phase of the study, and the dis-
ease progression of initial participants is continuously followed. Over time, some patients that were initially
labeled as control (CN) and mild cognitive impairment (MCI) had a change in diagnosis as their disease pro-
gressed. While some patients had as many as 16 MRI scans since the start of the study, clinical evaluations
were collected much less frequently, and genetic testing was only performed once per patient. Thus, com-
bining three modalities per patient was a unique challenge as, at times, there were contradictory diagnoses,
making the ground truth diagnosis unclear. For our overlap dataset, we used the latest MRI and clinical
evaluation for each patient and the most recent diagnosis. Several studies focused on using time-series data
to track the progression of the disease [17, 18, 23–25]. However, we aimed to accurately classify patients
into groups at the most recent state of evaluation so our method can be generalized to patients who are not
part of long-term observational studies.

2.1.2 Clinical Data Pre-processing

For clinical data, we use 2384 patients’ data from the neurological exams (e.g., balance test), cognitive
assessments (e.g., memory tests), and patient demographics (e.g., age). The clinical data is quantitative,
categorical, or binary, totaling 29 features. We removed any feature that could encode direct indication
of AD (e.g., medication that a patient takes to manage extant AD). A full list of features can be found in
Supplement S2. Categorical data were converted to features using one-hot encoding, and continuous-valued
features were normalized.

2.1.3 Genetic Data Pre-processing

The genetic data consists of the whole genome sequencing (WGS) data from 805 ADNI participants by
Illumina’s non-Clinical Laboratory Improvement Amendments (non-CLIA). The resulting variant call files
(VCFs) were generated by ADNI using Burrows-Wheeler Aligner and Genome Analysis Toolkit in 2014.
Each subject has about 3 million SNPs in the raw VCF file generated. However, not all detected SNPs are
informative in predicting AD. We followed the established pre-processing steps detailed in [20] to reduce
the number of SNPs and keep only the relevant genetic components. After such filtering (detailed further
in Supplement S1), we had 547,863 SNPs per patient. As we only have 805 patients with genetic data, we
were left with a highly sparse matrix. We used a Random Forest classifier as a supervised feature selection
method to determine which are the most important features, reducing our feature space to roughly 15,000
SNPs. Note that data points used for model testing were not seen by the classifier. While the result was still
sparse, we found that this level was a reasonable stopping point as determined by the experiment detailed
in Supplementary S1. The final data were grouped into three categories: no alleles, any one allele, or both
alleles present.
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2.1.4 Imaging Data Pre-processing

The imaging data in this study consist of cross-sectional MRI data corresponding to the first baseline screen-
ings from ADNI1 (551 patients). The data publisher has standardized the images to eliminate the non-
linearities caused by the scanners from different vendors. From each brain volume, we used three slices
corresponding to the center of the brain in each dimension. An example input is shown in Figure 1. Further
details on the ADNI pre-processing steps and experiments justifying the use of three images per patient can
be found in Supplement S3.

Figure 1: Imaging input example. The imaging model took as input three slices from the center of the MRI
brain volume, that were uniformly shaped to 72 x 72 pixels.

2.1.5 Finalizing the Training Dataset

To train our multimodal architecture, we used 239 patients that had data available from all three modalities.
The overlap dataset was chosen out of the original data mentioned above - imaging (551 patients), SNP (805
patients), and clinical (2284 patients) to predict AD stages. While the SNP data was unique per patient, the
clinical and imaging data appeared multiple times. To ensure a proper merger, we used the timestamps in
the clinical data and matched it to the closest MRI scan date. Next, we used the most recent evaluation on a
patient to avoid repeating patients. The patients’ demographic information is shown in Table 2.

Table 2: Participants’ demographic information. This table shows the number of participants in each
diagnosis group along with the percent of females and the average age of each group.

Group Participants (n) Female Sex (%) Mean Age (years)
Control 165 53.9 77.8
Mild Cognitive Impairment 39 34.2 76.6
Alzheimer’s Disease 35 31.4 78.1

2.2 Multimodal Framework

The proposed framework, MADDi, is shown in Figure 2. The model receives a patient’s pre-processed
clinical, genetic, and imaging data and outputs the corresponding diagnosis (CN, AD, or MCI). Following
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the input, there are modality-specific neural network architecture backbones developed in the single modality
setting (further detailed in the Performance of Unimodal Models Section). For clinical and genetic data, this
is a three-layer fully connected network, and for imaging data, we have a three-layer convolutional neural
network. The output of those layers then enters a multi-headed self-attention layer, which allows the inputs
to interact with each other and find what features should be paid most attention to within each modality. This
layer is followed by a cross-modal bi-directional attention layer [22], which performs a similar calculation
to self-attention but across different pairs of modalities. The purpose of cross-modal attention is to model an
interaction between modalities; for example, clinical features may help reinforce what the imaging features
tell the model and thus lead to more robust decision making. Both attention types are rigorously defined
in the Neural Network Attention Section. The last step concatenates the output of the parallel attention
computations and feeds it into a final dense layer that makes the prediction.

Figure 2: Model Architecture. (a) Data inputs - clinical data (demographics, memory tests, balance score,
etc.), genetic (SNPs), and imaging (MRI scans). (b) The input sources are combined and fed into a fully
connected (FC) neural network architecture for genetic and clinical modalities and a convolutional neural
network (CNN) for imaging data. (c) Using the obtained features from the neural networks, a self-attention
layer reinforces any inner-modal connections. (d) Then, each modality pair is fed to a bi-directional cross-
modal attention layer which captures the interactions between modalities. (e) Lastly, the outputs are con-
catenated and passed into a decision layer for classification into the (f) output Alzheimer’s stages (CN, MCI,
and AD).

2.3 Experimental Design

2.3.1 Neural Network Attention

As a part of our experimental design, we evaluate the importance of attention in our model. Previous
methods [17, 18, 20] explored the value that DL brings to automating AD diagnosis. We build on top of
previous multimodal DL frameworks and examine the need for inter-modal interactions through attention.
Thus, we used the same framework but toggled the presence of attention based on four criteria: self-attention
and cross-modal attention, just self-attention, just cross-modal attention, and no attention. The different
types of attention are introduced in the following.
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Generalized attention: Attention is a mechanism that captures the relationship between two states and
highlights the features that contribute most to decision-making. An attention layer takes as input queries
and keys of dimension dk, and values of dimension dv. A key is the label of a feature used to distinguish
it from other features, and a query is what checks all available keys and selects the one that matches best.
We compute the dot products of the query with all keys, divide each by the square root of dk, and apply a
Softmax function, which converts a vector of numbers into a vector of probabilities, to obtain the weights
on the values:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Following the success of the Transformer [26], we use the multi-head attention module, which allows the
model to jointly attend to information from different representation subspaces at different positions.

Self-Attention: For self-attention mechanisms, queries, keys, and values are equal. The self-attention
mechanism allows us to learn the interactions among the different parts of an input(“self”) and determine
which parts of the input are relevant for making predictions (“attention”). In our case, the prior neural
network layers produce in parallel three latent feature matrices for each modality that act as the keys, queries,
and values: imaging matrix I , genetic matrix G, and clinical matrix C. Self-attention, in our terms, refers to
attention computation done within the same modality. Thus the self-attention module performs the following
operations:

self-attention(I → I) (2)

self-attention(G→ G) (3)

self-attention(C → C) (4)

Cross-modal attention: In each bi-directional cross-modal attention layer [22], there are two unidirec-
tional cross-modal attention sub-layers: one from modality 1 to modality 2 and one from modality 2 to
modality 1. In our case, the cross-modal attention layer takes the output of each self-attention computation:
image self-attention output Is, genetic self-attention output Gs, and clinical self-attention output Cs. Thus
the cross-modal attention module performs the following operations:

concatenation(cross-modal attention(Is → Cs), cross-modal attention(Cs → Is)) (5)

concatenation(cross-modal attention(Cs → Gs), cross-modal attention(Gs → Cs)) (6)

concatenation(cross-modal attention(Gs → Is), cross-modal attention(Is → Gs)) (7)

Lastly, we created a model with no attention module at all, where, following the neural network layers, we
directly proceed to concatenate and produce output through the final dense layer. This setting represents the
previous state-of-the-art methods used for integrating multimodal datasets for our task.

2.3.2 Unified Hyperparameter Tuning Scheme

The modality-specific neural network part of MADDi was predetermined based on the hyperparameter tun-
ing done on each unimodal model (Supplement S4).We did not use the overlapping test set during hyperpa-
rameter tuning was done. To fairly evaluate the need for attention, we tuned using the same hyperparameter
grid for each of the other experimental models. Meaning, that each model (self-attention only, the cross-
modal attention only, and the model with no attention) gets its own set of best hyperparameters. We first
randomly split our 239 patients into a training set (90%) and a held-out testing set (10%). We chose a
90 - 10 split for consistency with all the papers we compared against (shown in 3). We designed a 3-fold
cross-validation scheme and took the parameters that gave the best average cross-validation accuracy. Next,
we used 5 random seeds to give the model multiple attempts at initialization. The best initialization was
determined based on the best training performance on the full train and validations set (i.e., validation was
added into training). This pipeline was repeated to find until we found the best parameters for each baseline.
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2.3.3 Evaluation Metrics

The following metrics were calculated for each model: accuracy, precision (positive predictive value), recall
(sensitivity), and F1-score (harmonic mean of recall and precision). F1-score was the primary performance
metric for evaluating our baselines. Accuracy was used to evaluate our best model against previous papers, as
that was the metric most commonly reported on this task. The metric calculations are detailed in Supplement
S5.

3 Results

3.1 Performance of Unimodal Models

To demonstrate the success of our multimodal framework, MADDi, we first examined the performance of
a single-modality model. Our evaluation pipeline was consistent across all modalities in that we used a
neural network and then tuned hyperparameters to find the best model. We split each modality into training
(90%) and testing (10%) data, where the testing set was not seen until after the best parameters were chosen
using the average accuracy across 3-fold cross-validation. The reported test accuracies are averaged across
five random initializations, which remained consistent across all modalities. The results are summarized in
Figure 3 (and in Supplement S6 Table S3). For the clinical unimodal model, we created a neural network
with three fully connected layers (other hyperparameters can be found in Supplement S4). The best model
yielded 80.5% average accuracy across five random seeds. The model was trained on 2384 patients. For
imaging results, we created a convolutional neural network with three convolution layers. The best model
yielded 92.28% average accuracy across five random seeds. The model was trained on 551 patients, but we
allowed for patient repetitions as we found that only using 551 images was not enough to train a successful
model. Thus, we had 3674 MRI scans from 551 patients (some patients repeated up to 16 times). We
selected our testing set such that it has 367 unique MRIs (10% of training), and we do not allow for any
repeating patients in the testing set. We only allowed repetition during training, and no patient was included
in both training and testing sets. For genetic data, we created a neural network with three fully connected
layers. The best model yielded 77.78% average accuracy across five random seeds. The model was trained
on 805 unique patients.

Figure 3: Metric evaluation of unimodal models. The graph shows all four evaluation metrics for the best
neural network model for each modality - imaging, clinical, and genetic. The imaging model gives the best
performance overall, whereas the genetic modality gives the lowest performance with highest variation.
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3.2 Performance of Multimodal Models

Table 3 contrasts the performance and architecture of MADDi with state-of-the-art multimodal approaches
from the literature. Note that due to the differences in dataset characteristics and multitask settings, it was
not possible to directly compare performance among methods that only report binary classification or use a
single modality. Thus, we only report studies that used two or more modalities and did 3-class classification.
For our proposed method we report the average accuracy across 5 random initializations on a held-out test
set. Therefore, we also use the test (as opposed to cross-validation) accuracy from other studies. Bucholc
et al. [19] used support vector machines to classify patients into normal, questionable cognitive impairment
(QCI), and mild/moderate AD, comparable to our definitions of control, MCI, and AD. They reported 82.9%
test accuracy but did not rely on deep learning. Fang et al. [27] used Gaussian discriminative component
analysis as a method of multi-class classification using two different imaging modalities, achieving 66.29%
accuracy on the test set. Abuhmen et al. and El-Sappagh et al. [17, 18] both used MRI, PET, and various
health record features. The key difference between the two is that El-Sappagh et al. considered a four-class
classification of control, AD, stable MCI (patients who do not progress to AD), and progressive MCI. Since
they did not report three-class classification, we could not directly compare to their work, but note that they
achieved 92.62% accuracy on the 4-class task. Both methods utilized deep learning, but they focused more
on disease progression diagnosis with time-series data rather than static disease diagnosis. Venugopalan et
al. [20] were most similar to our study in structure, modality choice, and pre-processing. They, too, did
not utilize the recent advancement of attention-based multimodal learning, which is where our architecture
stands out. At 96.88% ± 3.33% average accuracy, MADDi defined state-of-the-art performance on the
multimodal three-class classification task.

Table 3: Comparison with related studies. This table shows the comparison between our study and 5 other
previous studies that attempted to solve a similar problem to ours. MADDi preformed with 96.88% average
accuracy and 91.41% average F1-Score across 5 random initializations on a held-out test set, achieving
state-of-the-art performance on the multimodal three-class classification task.

Study Modality Accuracy F1-Score Method
Bucholc et al. [19], 2019 MRI, PET, Clinical 82.90% Not Reported SVM
Fang et al. [27], 2020 MRI, PET 66.29% Not Reported GDCA
Abuhmed et al. [18], 2021 MRI, PET, Clinical 86.08% 87.67% Multivariate BiLSTM
Venugopalan et al. [20], 2021 MRI, SNP, Clinical 78% 78% DL + RF
MADDi MRI, SNP, Clinical 96.88% 91.41% DL + Attention

3.3 Model Robustness

To definitively conclude that both self-attention and cross-modal attention are necessary additions to the
model, we ablated the attention schemes in three conditions (self-attention only, cross-modal attention only,
and the model with no attention) on the held-out test set using the best parameters for each respective model.
To demonstrate that our success was not dependent on initialization, we used 100 different random seeds and
recorded the distribution of F1-scores on the testing set. For more information on our test sample selection,
refer to Supplement . Figure 4 (and Table S4 in Supplement Section S7) shows that self-attention and cross-
modal attention layers together have the narrowest distribution, with the highest median F1-score. The next
best distribution is the cross-modal attention layer alone, which has a slightly wider distribution but still the
second-highest median F1-score. The success of the two methods involving cross-modal attention becomes
apparent and provides strong evidence that capturing interactions between modalities positively influences
the model’s decision-making. All three models that utilize attention achieved 100% F1-score for at least one
initialization, while the model with no attention layers only reached at most 92.8% F1-score. Furthermore,
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the performance of our final model was 7.9% average F1-Score higher than a model with no attention, and
was significant (p − value < 0.0001, two-sample Z-test) - providing further evidence that attention was
beneficial for multimodal data integration.

Figure 4: F1-Score Distribution for different attention-based and attention-free baselines. Box plots
showing the F1-score distribution across 100 random seeds to demonstrate the value of attention in a deep
learning model. The F1-scores were calculated from a held-out test set. The horizontal line represents the
median F1-score, and the boxes represent the first and third quartiles. The whiskers represent quartile 1
- (1.5 x interquartile range) and quartile 3 + (1.5 x interquartile range). The dots represent the individual
F1-scores for each model. ****: P≤ 0.0001. The figure demonstrates that the combination of self-attention
with cross-modal attention performs the best with the most narrow variation.

Using the self-attention and cross-attention model (MADDi), we investigated the performance of the
model with respect to the individual classes as seen in Table 4. We report metrics averaged across 5 random
initializations. We find that, regardless of the initialization, the model is extremely accurate at identifying
AD patients. However, for some cases, it tends to mistake MCI patients for controls. We hypothesize that,
since our data does not include different stages of MCI, it may have MCI patients with mild symptoms that
could be mistaken for controls by the model. These observations can be seen in detail through 5 confusion
matrices from the 5 initializations in the Supplement Section S8 Figure S4.

Table 4: Investigating performance for each individual class. This table shows the performance metrics
averaged across 5 random initializations of MADDi on each class (control, Moderate Cognitive Impair-
ment, and Alzheimer’s Disease). We observe that Alzheimer’s Disease is predicted correctly regardless of
initialization and the only mistake the model makes is misclassifying MCI patients as control patients.

Accuracy Precision Recall F1-Score
Control 96.66% 96.78% 98.88% 97.81%
Moderate Cognitive Impairment 96.66% 90.00% 70.00% 76.66%
Alzheimer’s Disease 100% 100% 100% 100%
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3.4 Modality Importance

Finally, we investigated the importance of each modality to bring more transparency into the model’s
decision-making and motivate future data collection efforts. Knowing how valuable each modality is to
disease classification and what happens when it is excluded from the experiment can shed light on where
to focus scientific resources. While every study participant had at least some clinical data available, only
a few hundred patients had MRI scans. To fairly compare each modality’s importance to the model, we
performed our analyses on the same exact patients. Thus, we evaluated the contribution of the modalities on
the overlap patient set (detailed in Figure 5). For single modalities, we only used self-attention. For a pair
of modalities, we used both self-attention and cross-modal attention. We performed hyperparameter tuning
for each model to ensure fair evaluation, with all the parameters provided in Supplement S4 Table S1. As
seen in Figure 5, combining the three modalities performs the best across all evaluation metrics. A full table
with the numeric results can be found in Supplement S10 Table S6. The interesting discovery here was the
clinical modality contribution to this performance. While the use of two modalities was better than one in
most cases, when clinical data was withheld, we saw a significant drop in performance; clinical data alone
achieved 82.29% accuracy and 78.30% F1-score, whereas genetic and imaging together achieved 78.33%
accuracy and dropped to 50.07% F1-score. These results suggest that the clinical dataset is an important cat-
alyst modality for AD prediction. We hypothesize that this empirical merit stems from the fact that clinical
features offer the necessary patient context that grounds the additional modalities such as vision or omics
information and helps the model in their effective representation and interpretation.

To further investigate the clinical data, we used a Random Forest classifier (which fits the clinical training
data to the diagnosis labels in a supervised manner) to find the most dominant features from the clinical
modality: memory score, executive function score, and language score. A full list of features in order of
importance can be found in Supplement S2 Figure S1.

Figure 5: Evaluation of modality importance. This figure evaluates the possible combinations of modal-
ities. The metrics were calculated as an average of five random initializations on a held-out test set. The
combination of the three modalities performs the best across all evaluation metrics. Excluding the clinical
modality causes a drop in performance, demonstrating the value of clinical information.
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4 DISCUSSION

4.1 Clinical Importance and Implications

Detecting AD accurately is clinically important as it is the 6th leading cause of death in the United States and
is the most common cause of dementia [1]. Without treatment or other changes to the trajectory, aggregate
care costs for people with AD are projected to increase from $203 billion in 2013 to $1.2 trillion in 2050
[2]. Despite studies such as ADNI collecting various imaging, genetic, and clinical data to improve our
understanding of the underlying disease processes, most computational techniques still focus on using just
a single modality to aid disease diagnosis. Our state-of-the-art model allows for an effective integration
scheme of three modalities and can be expanded as more data sources become available.

4.2 Future Extensions

The proposed model architecture can be used in other multimodal clinical applications, such as cancer
detection [28, 29]. As the efforts to make health care data more broadly available continue to increase,
we believe that our model will help aid the diagnostic process. The framework we propose does not rely
on modality-specific processing within the model itself. Thus, our future work will include other data
(PET scans, clinical notes, biomarkers, etc.). While it is straightforward to simply interchange the current
modalities with new ones and only use three modalities at a time, we plan on expanding our work beyond
this current level as there is no rigid constraint on the number of modalities used with the given codebase.
Furthermore, similarly to the task El-Sappagh et al. [17] explored, we will extend our task to more than
three-class classification and use our work to detect different types of MCI (stable MCI and progressive
MCI). This will help better understand AD progression and delay the change from MCI to AD.

4.3 Limitations

When creating our unimodal performance baselines, we often struggled with finding the ground truth labels
for the genetic data. While every patient had a diagnosis attached to an MRI scan, and most of the clinical
exams also had a diagnosis listed, genetic data did not. Out of the 808 patients with genetic data, we used
805 patients where diagnosis on their most recent MRI scan agreed with their clinical diagnosis. Thus, we
proceeded with 805 patients to eliminate any error in the ground truth labeling. This gap is natural, as a
patient may have had a more recent MRI that changed the diagnosis, leaving the recent clinical evaluation
outdated (and vice versa).

During pre-processing of the MRI images, we chose to use the middle slice of the brain rather than the
full brain volume. This could mean that our model did not see certain areas of the brain. When running
unimodal experiments on the MRI data, the performance remained the same (within one percent) when using
just the middle slice of the brain compared to the full brain volume, shown in the Supplement S3. Since
processing thousands of slices per patient is much more computationally expensive, we proceeded with this
simplification. While on our task, there was no significant difference in performance; in other applications
integrating the full brain volumes into the model could further increase performance.

5 Conclusions

In this work, we presented a Multimodal Alzheimer’s Disease Diagnosis framework (MADDi), which uses
attention-based deep learning to detect Alzheimer’s disease. The performance of MADDi was superior to
that of existing multimodal machine learning methods and was shown to be consistently high regardless of
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chance initialization. We offer three distinct contributions: integrating multimodal inputs, multi-task classi-
fication, and cross-modal attention for capturing interactions. Many existing multimodal DL models simply
concatenate each modality’s features despite substantial differences in feature spaces. We employed atten-
tion modules to address this problem; self-attention reinforces the most important features extracted from
the neural network backbones, and cross-modality attention [22] reinforces relationships between modali-
ties. Combining the two attention modules resulted in a 96.88% accuracy and defined state-of-the-art on this
task. Overall, we believe that our approach demonstrates the potential for an automated and accurate deep
learning method for disease diagnosis. We hope that in the future, our work can be used to integrate multi-
ple modalities in clinical settings and introduce the highly effective attention-based models to the medical
community.
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MULTIMODAL ATTENTION-BASED DEEP LEARNING FOR ALZHEIMER’S
DISEASE DIAGNOSIS

Supplementary Material

S1 Genetic Data Pre-processing

The genetic data consists of the whole genome sequencing (WGS) data from 805 ADNI participants by
Illumina’s non-Clinical Laboratory Improvement Amendments (non-CLIA) laboratory at roughly 30–40 ×
coverage in 2012 and 2013. The resulting variant call files (VCFs) have been generated by ADNI using
Broad best practices (Burrows-Wheeler Aligner (BWA) and Genome Analysis Toolkit (GATK)-haplotype
caller) in 2014. We first filtered the SNPs by the Hardy-Weinberg equilibrium (HWE) test for each site (p-
values) by removing SNPs with HWE p < 0.05. We then checked the genotype quality (GQ) and removed
SNPs with GQ < 20. Next, we filtered by minor allele frequency (MAF) and removed sites with MAF
< 0.01. Lastly, we performed genotype value filtering where we excluded sites based on the proportion
of missing data and removed sites with a missing rate > 0.05. After filtering with the above criteria, we
utilized genes known to be related to Alzheimer’s Disease. In this step, we first downloaded a list of all AD-
related genes from the AlzGene Database (http://www.alzgene.org/), which contains 680 genes
in total. Then we searched these genes in the UCSC genome browser (https://genome.ucsc.edu/)
and kept the 640 genes that matched NCBI RefSeq annotation. We extracted these gene regions from RefSeq
Annotation (gff file) in Bed format and use them to filter the SNPs further. We only retain the genes that
are located in these regions. After selecting the 680 genes of known association with AD, we had 547,863
SNPs left. As discussed in the Genetic Data Pre-processing Section, we needed to find a way to reduce the
number of features. We used a Random Forest Classifier to create a list of the most important features. Since
this is a supervised method of creating features, this brought more promising results to the performance, in
contrast to an approach such as principal component analysis (PCA) which is unsupervised. To find the best
set of features, we tried using 50, 100, 150, and 200 forests as the parameter in the classifier. After creating
the four sets of features, we used a validation set (10% from the training) to do hyperparameter tuning (as
described in S4), for each set of features, we found that the set from 100 forests performed the best on the
validation set resulting in the accuracy described in the Performance of Unimodal Models Section.

S2 Clinical Features

In the Model Robustness Section we discussed the value of clinical features to the model’s performance. To
ensure that there are no variables in the data that could potentially give an unfair advantage to the model
(e.g. medication that a patient takes, only when they already have AD), we carefully examined all available
variables. We fit a Random Forest classifier (from the scikit-learn package [30]) which outputs the fea-
tures along with their importance score. The importance of a feature is computed as the (normalized) total
reduction of the criterion brought by that feature [30]. Figure S1 shows the full list of features and their
importance.
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Figure S1: Clinical feature importance. The graph shows all the clinical features used in our model in
order of most important to least important
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S3 Imaging Data Pre-processing

The images used for our study are pre-processed by ADNI with specific image correction steps:

1. Gradwarp: gradwarp is a system-specific correction of image geometry distortion due to gradient
non-linearity. The degree to which images are distorted due to gradient non-linearity varies with each
specific gradient model. We anticipate that most users will prefer to use images which have been
corrected for gradient non-linearity distortion in analyses.

2. B1 non-uniformity: this correction procedure employs the B1 calibration scans noted in the protocol
above to correct the image intensity non-uniformity that results when RF transmission is performed
with a more uniform body coil while reception is performed with a less uniform head coil.

3. N3: N3 is a histogram peak sharpening algorithm that is applied to all images. It is applied after grad
warp and after B1 correction for systems on which these two correction steps are performed. N3 will
reduce intensity non-uniformity due to the wave or the dielectric effect at 3T. 1.5T scans also undergo
N3 processing to reduce residual intensity non-uniformity.

We followed the same pre-processing steps as Bucholc et al. [19], El-Sappagh et al. [17], and Abuhmad et
al. [18], which relied on ADNI’s correction steps without further modification.
To demonstrate that the performance of the unimodal imaging model is not significantly impacted by the
addition of more brain slices, we report the optimized performance of the model with just the middle three
slices, 2 more images per angle (6 more in total), 5 more images per angle, 10 more images per angle, 20
more images per angle, and 50 more images per angle. We report both F1-Scores and accuracy (averaged
across 3-fold validation set), which follow a similar trend shown in S2. The difference in performance
between no additional slices (used in the paper) and 20 additional slices are all within 1 percent. When
adding 50 slices to each angle, we observe a significant decline in performance. Thus, we proceeded with
the original choice of just using the middle of the brain.

Figure S2: Validation F1-Score and Accuracy Trend as Number of Images Increases. The graph shows
that the unimodal imaging model does not significantly benefit from the addition of more images.
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The decline in performance can be attributed to the fact that the slices further away from the center do not
contain meaningful information and add noise to the model. The example below shows the middle three
slices, followed by the outer 10 slices and outer most slices.

Figure S3: Example of MRI slices as distance increases from the center.
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S4 Hyperparameter Tuning Methods

To perform hyperparameter tuning for both unimodal and multimodal results, we randomly split the data
into a training set (90%) and a testing set (10%). The testing set was set aside and withheld from tuning. We
picked the best hyperparameters on the average validation accuracy of the 3-fold cross-validation scheme.
For either a fully connected neural network or a convolutional neural network, the architecture, batch size,
number of epochs, and learning rate were chosen via tuning. Table S1 describes all hyperparameters con-
sidered.

Table S1: Hyperparameter Grid

Hyperparameters Values
Learning Rate [0.00001, 0.1]
Dropout Values {0.1, 0.2, 0.3, 0.4, 0.5}
Number of Layers [1, 6]
Batch Size {16, 32, 64, 128}
Number of Epochs {10, 20, 50, 80, 100, 150, 200}

The hyperparameters that gave the highest accuracy for each type of model are shown in S2. For the
multimodal framework, the best unimodal neural network values were added into the architecture.

Table S2: Best Hyperparameters

Learning Rate Batch Size Number of Layers Dropout Value Number of Epochs
Unimodal Clinical 0.0001 32 3 {0.2, 0.3, 0.5} 100
Unimodal Genetic 0.001 32 3 {0.3,0.5} 50
Unimodal Imaging 0.001 32 3 {0.3,0.5} 50
Multimodal 0.001 32 {3, 3, 3} {0.2, 0.3, 0.5} 50

S5 Evaluation Metrics

For our multi-class setting, we used the formulas below for each class. For example, for class 0 (control),
we calculated the number of true positives, true negatives, false positives, and false negatives just for class
0. Then, we use “macro” averaged F1-score using the arithmetic mean of all the per-class F1-scores.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN
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S6 Performance of Unimodal Models

Table S3 shows the numeric information presented in Figure 3. We report all four evaluation metrics for the
best neural network model for each modality - imaging, clinical, and genetic. The imaging model gives the
best performance overall, whereas the genetic modality gives the lowest performance.

Table S3: Results of Unimodal Models.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Clinical 80.59 80.56 80.48 80.47
Imaging 92.23 94.02 90.4 91.83
Genetic 77.78 78.37 76.92 77.24

S7 Model Robustness

Table S4 shows the numeric information presented in Figure 4.

Table S4: F1-Score Distribution for different attention-based and attention-free baselines. The table
shows the F1-score distribution across 100 random seeds to show the value of attention in a deep learning
model. The table demonstrates that the combination of self-attention with cross-modal attention performs
the best with the most narrow variation.

Lower Whisker Lower Quartile Median Upper Quartile Upper Whisker
Self-Att + Cross-Modal Att 0.7767 0.8268 0.8799 0.9238 1
Cross-Modal Att 0.4068 0.6491 0.7657 0.8268 1
Self-Att 0.7175 0.8148 0.8682 0.8799 0.9238
No Attention 0.6396 0.7714 0.8148 0.8799 0.9238

21



S8 Investigating Individual Class Performance

We include confusion matrices for each of the 5 random initializations to supplement Table 4 in the Model
Robustness Section. Each confusion matrix represents the results of our best multimodal model with respect
to a random seed.

(a) Random Seed 1 (b) Random Seed 2

(c) Random Seed 3 (d) Random Seed 4

(e) Random Seed 5

Figure S4: Confsion matricies for 5 random initializations of MADDi.
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S9 Sample Selection

To demonstrate that our sample selection process was thorough, we show in Table S5 the results of the
models described in Model Robustness Section on the 3-fold cross validation scheme. The metrics in the
table are averaged across 5 random initializations. Since these results are similar to the ones reported on the
test set in Table 3, we consider the test set a fair sample of our data.

Table S5: Cross-Validation Results

F1-Score Val Set 1 F1-Score Val Set 2 F1-Score Val Set 3
Cross-Modal Att + Self-Att 89.74% 97.44% 92.30%
Cross-Modal 87.18% 91.02% 88.46%
Self-Att 76.92% 85.89% 83.34%
No Attention 79.48% 89.74% 87.17%

S10 Evaluation of Modality Importance

Table S6 shows the contribution and performance of each modality on the overlap patient set. The metrics
were calculated as an average of five random initializations on a held-out test set. It captures the same
information as Figure 5 in the Modality Importance Section but provides all the numeric results.

Table S6: Evaluation of Modality Importance

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Clinical 82.29 ± 9.49 78.92 ± 3.68 88.43 ± 5.29 78.30 ± 6.70
Genetic 77.78 ± 3.91 78.37 ± 4.64 76.92 ± 3.78 77.24 ± 4.03
Imaging 71.66 ± 4.68 53.38 ± 9.55 62.03 ± 9.77 55.46 ± 8.86
Clinical and Genetic 92.50 ± 3.18 87.05 ± 9.36 81.85 ± 1.36 83.21 ± 4.21
Genetic and Imaging 78.33 ± 1.86 50.88 ± 8.19 52.59 ± 6.88 50.07 ± 4.28
Imaging and Clinical 85.83 ± 10.73 80.81 ± 8.56 88.15 ± 15.52 80.52 ± 13.34
Clinical, Genetic, Imaging 96.88 ± 3.33 88.15 ± 14.22 91.23 ± 13.37 89.32 ± 15.59
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