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ABSTRACT

Given the success of Large Language Models (LLMs), there has been considerable
interest in studying the properties of model activations. The literature overwhelm-
ingly agrees that LLM representations are dominated by a few “outlier dimensions”
with exceedingly high variance and magnitude. Several studies in Natural Language
Processing (NLP) have sought to mitigate the impact of such outlier dimensions
and force LLMs to be isotropic (i.e., have uniform variance across all dimensions
in embedding space). Isotropy is thought to be a desirable property for LLMs
that improves model performance and more closely aligns textual representations
with human intuition. However, many claims regarding isotropy in NLP have
been based on the average cosine similarity of embeddings, which has recently
been shown to be a flawed measure of isotropy. In this paper, we propose I-STAR:
IsoScore*-based STable Anisotropic Regularization, a novel regularization method
that can increase or decrease levels of isotropy in embedding space during training.
I-STAR uses IsoScore*, the first accurate measure of isotropy that is both differ-
entiable and stable on mini-batch computations. In contrast to several previous
works, we find that decreasing isotropy in contextualized embeddings improves
performance on most tasks and models considered in this paper.

1 INTRODUCTION

Several previous works have investigated the role of isotropy in Large Language Model (LLM)
representations (Rudman et al., 2022). A distribution is isotropic if the variance of the data is uniform
and the data dimensions are uncorrelated. In practice, a distribution is isotropic when its covariance
matrix is proportional to the identity matrix. Studies have found that representations from LLMs,
such as BERT or GPT-2, lack the property of isotropy and that contextualized word embeddings are
dominated by a few “rogue” or “outlier” dimensions (Timkey and van Schijndel, 2021; |[Kovaleva et al.
2021). Several previous works have argued that anisotropy, i.e., the lack of isotropy, is detrimental
to LLM embeddings as it 1) forces representations to occupy a “narrow cone” in space (Ethayarajh,
2019;|Cai et al.,[2021)); 2) obscures linguistic information, thereby limiting the expressive power of the
embeddings (Gao et al.| 2019; Zhang et al.| 2020; Mickus et al.,[2019)), and; 3) hinders performance
on a variety of downstream tasks (Kovaleva et al., 2021} |Bis et al., 2021} Timkey and van Schijndel,
2021). However, some recent works have challenged previously held conceptions about isotropy,
arguing that current methods of measuring isotropy are fundamentally flawed (Rudman et al.| 2022;
Rajaee and Pilehvar, 2021a). To address these concerns, Rudman et al.| (2022)) propose IsoScore, an
accurate and robust method for measuring isotropy based on the covariance matrix of a distribution.
Although IsoScore is an effective method for measuring isotropy, we demonstrate that IsoScore is
neither differentiable nor stable when the number of points in a given sample is small. Therefore,
IsoScore cannot serve as an effective model regularizer.

Given the recent criticism of methods for measuring isotropy, a reassessment of previously accepted
theories of isotropy in LLMs is needed. This paper aims to determine the relationship between
isotropy and model performance on a wide variety of language models and fine-tuning tasks. We first
propose IsoScore*, a method for measuring isotropy that is 1) fully differentiable, 2) incorporates
classical techniques for covariance estimation to create stable isotropy estimates for mini-batch
data, and 3) approximates IsoScore for large sample sizes. We then use IsoScore* to develop I-
STAR: IsoScore*-based STable Anisotropic Regularization. I-STAR is a flexible way to adjust
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Figure 1: Forward pass of our I-STAR loss function. Let x; be the token embeddings in a mini-batch

atlayerl € {1,2,...,n},let X = Ui, 1, let £, be the shrinkage covariance matrix for epoch i and
let ¢ € (0, 1) be the shrinkage parameter. I-STAR loss is a weighted sum between cross-entropy loss,

Leg, and IsoScore*(f( ,(,Xg,) where A is the tuning-parameter. Negative values of \ correspond to
decreasing isotropy in representations, and positive values of \ encourage isotropy.

isotropy in model representations during training or fine-tuning. In contrast to works that use “flawed”
measures of isotropy, we find that using I-STAR to decrease isotropy in embedding space, i.e., making
representations more anisotropic, tends to improve downstream performance across three different
LLMs and nine different fine-tuning tasks. Our finding that anisotropic representations perform better
on downstream tasks is aligned with literature outside of NLP that argues anisotropy is a natural
by-product of stochastic gradient descent, where anisotropy helps models escape local minima in the
loss landscape and, thus, generalize better to unseen data (Zhu et al.,2018). Additionally, our findings
are supported by a well-established body of literature arguing that lower intrinsic dimensionality of
network representations in later model layers corresponds to better performance on downstream tasks
(Ansuini et al}2019; Recanatesi et al.,[2019; |Chung et al.| 2018)). This paper makes the following
novel contributions.

1. We propose IsoScore*, a robust method for measuring isotropy that is stable even when the
number of samples in a point cloud is small.

2. We present a novel regularization method, I-STAR: IsoScore*-based, STable Anisotropic
Regularization. I-STAR effectively shapes the geometry of network activations in a stable
manner that overcomes the current limitations of other methods that backpropagate through
the calculation of principal components during stochastic gradient descent.

3. In contrast to existing theories of NLP, we demonstrate that decreasing isotropy in LLMs
tends to improve performance on various fine-tuning tasks and models.

2 RELATED WORK

Improving Isotropy. Methods to restore isotropy in contextualized embedding models fall into two
categories: post-processing methods and regularizers. [Mu et al.|(2017) propose All-But-The-Top, a
post-processing algorithm that masks out several of the fop principal components of the data. The
authors show that their simple algorithm improves performance for Word2Vec and GloVe embeddings
on word similarity tasks. Several slight variations have occurred on the All-But-The-Top algorithm
where the top principal components of the last hidden state of LLMs are masked or removed (Rajaee
and Pilehvar| [2021b; Bihani and Rayz, 2021} [Liang et al., [2021} [Liao et al., [2020; [Sajjad et al.,
2022). Across each of these studies, the authors argue that improving isotropy in the embedding
space improves model performance. However, studies evaluating the impact of improving isotropy
in embedding space by masking principal components tend to be limited to word similarity tasks,
which do not provide a complete picture of the importance of isotropy in model representations.
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Zhou et al.| (2020) propose Isotropic Batch Normalization, a modified whitening transform that forces
representations to be zero-mean but allows the covariance matrix of model representations to be block
diagonal and does not entirely remove all correlations from the data. The authors apply their novel
transformation to the final hidden state representations of a BERT model before being input to the
classification head and show that Isotopic Batch Normalization minimally improves the performance
of BERT on several datasets in the GLUE benchmark. Several authors argue that isotropy can be
restored in contextualized embedding space by applying a simple zero-mean transformation to the
data (BiS et al., 2021} |Cai et al.| [2021). Given that isotropy is a property of the covariance matrix
of the data and is unrelated to the mean, the improvements on the textual similarity tasks shown in
various studies are likely unrelated to the property of isotropy. There have been far fewer attempts in
the literature to improve isotropy using regularization penalties. |Gao et al.|(2019) propose CosReg,
a regularization technique that penalizes the model when the average cosine similarity of model
representation approaches 1. The motivation behind CosReg is that by reducing the average cosine
similarity between embeddings, models will be penalized when representations occupy a “narrow
cone” in vector space (Gao et al., 2019; [Zhang et al.,|2020). Although the authors report modest
gains when using CosReg, more current studies have argued that average random cosine similarity
does not accurately measure isotropy (Rudman et al., 2022).

Although a large number of papers in NLP argue that isotropy is beneficial for representations,
the broader machine learning community has found that 1) anisotropy is a natural consequence of
stochastic gradient descent; 2) anisotropy allows for networks to generalize better to unseen examples,
and; 3) networks that compress data into lower dimensional manifolds show better performance on
downstream tasks (Zhu et al., 2018 |Ansuini et al.,[2019} |[Recanatesi et al.,[2019). We argue that the
primary reason for the differences between claims on isotropy in NLP literature and machine learning
literature stems from the noisy range of often flawed methods of measuring isotropy on which many
claims are based (Rudman et al.}[2022)). In Section 2.1} we discuss the most common methods used
to measure isotropy in embedding space and detail why most attempts to measure isotropy in the
NLP literature do not accurately reflect properties of isotropy.

2.1 MEASURING ISOTROPY

Average random cosine similarity is the most common method for measuring “isotropy” in embed-
ding space. An average random cosine similarity approaching 1 is thought to represent a minimally
isotropic space, while an average random cosine similarity of O constitutes a maximally isotropic
space (Ethayarajh, [2019). [Ethayarajh| (2019)) finds that the average random cosine similarity between
activations of BERT and GPT-2 approach 1, which the authors use to argue that model representations
form a “narrow cone” in vector space. However, Rudman et al.|(2022) show that average random
cosine similarity is not a measure of isotropy since the average cosine similarity of points artificially
approaches 1 when the mean of the data is far from the origin and will be O when the data are
zero-mean, regardless of the shape of the distribution.

The partition isotropy score is based on a partition function, Z(C) := 3" __ v exp(c’ z), developed

by |Arora et al.|(2015), where ¢ € R4 represents the set of unit vectors and X C R is a finite point
cloud. Since calculating the entire partition function is intractable, studies typically approximate the
full partition function as I(X) ~ min.ccZ(c)/max.ccZ(c), where ¢ is chosen from the eigenspec-
trum of X X7 (Mu et al.,2017). Mu et al.| (2017) prove that there exists a choice of C' such that their
method for measuring isotropy reflects the uniformity of principal components of the data. However,
approximating ¢ from the eigenspectrum of X X7 results in undesirable properties, such as being
heavily influenced by the mean vector of X and influenced by orthogonal transformations of the data
that are unrelated to isotropy (Rudman et al., 2022).

Intuitively, IsoScore measures how “far away” the covariance matrix of the data is from « - I;, where
« is a positive scalar and I is the d x d identity matrix. Algorithm 2]details the steps required to
calculate IsoScore/Rudman et al.|(2022)) develop a rigorous testing suite to demonstrate that IsoScore
is the first tool in the literature that accurately measures isotropy in embedding space. To ensure that
IsoScore is not biased towards a given basis of the data, the authors “reorient” the data by projecting
a point cloud of data by its principal components. An IsoScore value of 1 indicates that a distribution
is fully isotropic, and a score near 0 suggests that a single dimension in vector space dominates
representations. Although IsoScore is an accurate measure of isotropy, we demonstrate in Section
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Algorithm 1 IsoScore* Forward Pass

Input: X C R? point cloud, 5 € R4*? shrinkage covariance matrix, ¢ € (0, 1).
Outputs: I-STAR penalty of X.

calculate covariance matrix: > x of X

calculate shrinkage matrix: X, := (1 —¢) - Xx + (- Xg

calculate eigenvalues: A := {1, .., Aq} of 3¢

normalize eigenvalues: A := v/d - A/||A||2 such that ||A]| = v/d

calculate the isotropy defect:

AN A R i

§(A) == [JA = 1||/y/2(d — Vd)
where 1 = (1,...,1)T € R?
8: calculate: ¢(A) := (d — (A) (d—Vd))?/d?
9: calculate: t(A) := (d- ¢(A) —1)/(d —1).

that IsoScore will systematically underestimate the true isotropy score of a distribution when the
number of samples is small relative to the dimensionality of the vector space.

Since many current works in NLP use “flawed” measures of isotropy, such as average random
cosine similarity and the partition isotropy score, the connection between isotropy in LLMs and their
performance on downstream tasks has not been established. This study devises a novel regularization
penalty, I-STAR, to investigate the relationship between model performance and isotropy in model
representations. In contrast to several previous works based on average cosine similarity or the parti-
tion score, we use IsoScorex to demonstrate that decreasing isotropy tends to improve performance
on downstream tasks, while increasing isotropy hampers performance on nearly all tasks and models
considered in this paper.

3 ISOSCORE*

Previous methods for measuring isotropy in embedding space are either 1) not accurate measures
of isotropy, 2) not differentiable, or 3) not stable on mini-batch computations. In this section, we
propose IsoScore*, a novel, fully differentiable measure of isotropy that is stable, even for small
sample sizes. First, we provide a thorough description of IsoScore*. We then analyze the mini-batch
stability of common isotropy metrics and demonstrate that IsoScore* can accurately measure the
isotropy of small data samples, while vanilla IsoScore systematically underestimates the isotropy of a
distribution when the number of points in a finite point cloud is smaller than the dimensionality of
the vector space. For the remainder of this section, let X C R4 and S C R be finite point clouds
drawn from a distribution X such that | X| < d << |S|.

Intuitively, IsoScore* measures the extent to which the principal components of a distribution are
uniformly distributed. Measuring isotropy as a function of the principal components allows us to
backpropagate through IsoScore* since PCA is a differentiable function (Huang et al.,|2018). An
IsoScore* value of 1 implies that for principal components {1, .., \g}, A\; = A;V2, j. An IsoScore*
value of 0 implies that only a single principal component is non-zero. Although both IsoScore* and
the partition score measure isotropy via the principal components of a distribution, IsoScore* directly
measures the uniformity of the eigenspectrum of principal components and does not have to rely on
approximations to the eigenspectrum like the partition function defined by [Mu et al.| (2017)).

IsoScore* Pseudocode. Step 3) of Algorithm [I] begins by calculatlng the covariance matrix of
X C R that we assume is sampled from the distribution X . Next, in Step 4) we calculate the RDA-
Shrinkage matrix, >¢, as a weighted sum between the covariance matrix of X and the covariance
matrix of S, 3 g, to produce a more accurate estimate of the covariance matrix of the true distribution
X. The shrinkage parameter, ¢, controls how much covariance information is used from X and
S in estimating the covariance matrix of X. In Step 5), we calculate the eigenvalues of 3. Step
6) normalizes the eigenvalues so that the L2 norm of the eigenvalues equals the norm of the vector
containing all Is (i.e., 1,1,...,1). The remaining normalizing Steps 7-9 are derived in the same
manner as vanilla IsoScore. For a detailed pseudocode analysis of both IsoScore and IsoScore*, as



Pre-print

well as a proof that IsoScore approximates IsoScore* when the number of samples in our point cloud
is large, see Section [A]in the appendix.

Mini-batch stability of isotropy estimates. The mini-batch stability of methods Appendixuring
isotropy has yet to be investigated. We test the stability of mini-batch isotropy by sub-sampling small
batches of points, X, from a point cloud of data, X C R768, consisting of 250,000 points sampled
from a 768-dimensional Gaussian distribution with a zero mean-vector and a covariance matrix, X g,
such that ¥ ¢ has diag(X g) = {10,6,4,4,1, ..., 1} and zero off-diagonal elements.

In Section@of the Appendix, we prove that when ¢ = 0 (i.e. no shrinkage is performed), IsoScore(.X)
=TIsoScore* (X, (,Xg). Figuredemonstrates that for a sub-sample X of X, if | X| is not sufficiently
larger than d, IsoScore systematically underestimates the true degree of isotropy (dashed horizontal
line) of the distribution, X, from which X is sampled. This means IsoScore(.X) << IsoScore(X).
For isotropy results to be reliable, future work should ensure that the number of points in a given
sample is significantly larger than the dimensionality of the distribution. The primary reason IsoScore
underestimates the true degree of isotropy of the distribution is that IsoScore relies on calculating
the covariance matrix of a sample. When the number of points in a sample, | X]|, is less than the
dimensionality of the space, the covariance matrix of X may be singular (Friedman, |1989)). Existing
methods to improve isotropy and some of the most common metrics to evaluate isotropy, such as the
partition isotropy score (Mu et al., 2017), rely on investigating the principal components of the data.
As a consequence, the problem of underestimating the isotropy of sample distributions will affect
nearly all previous works. Fortunately, many well-established methods in the statistics and machine
learning literature exist to ensure that a covariance matrix will be better conditioned and invertible,
leading to more reliable methods to alter and measure isotropy in embedding space (Friedman), [1989).

Stabilizing covariance estimation. Shrink-
age is a simple operation that adds a known,

: *
stable covariance matrix to a non-invertible, Impact of Sample Size on IsoScore

singular sample covariance matrix (Fried+ L0 '“'DU
man, [1989). Performing shrinkage ensures e 02
that the resulting covariance matrix is in- . 08 — 04
vertible. In situations where one does not £ g4 o
have access to multiple samples or a sam- &3

ple where S C X such that d << |5/, the 2 04

matrix ¢ - Iy + X x is used as the shrink- 02

age matrix (Friedman, |1989). However, if ’

one has access to the larger point cloud S 0.0
or multiple samples from X, then a more
faithful estimate of the covariance matrix
of X can be obtained using regularized dis-
criminant analysis (RDA) (Friedman, [1989). )
RDA shrinkage pools covariance matrices Figure 2: IsoScore*(X, ¢, ES) values for different
together using ¥¢ == (- Xx + (1 - () - Xg choices of ¢. The dashed line indicates the correct

to get a more accurate measure of the covari- IsoScore” value of X, which is IsoScore*(X') = 0.86.
ance matrix of the distribution from which ~We calculate X from a subsample S C X' such that

X is sampled. Figure ] demonstrates that X 1 S = and |S| = 75, 000.

performing this shrinkage operation on X x

drastically improves the stability of IsoScore* even when |X| = 700 and d = 768. Step 4 of
Algorithm[TJuses RDA shrinkage to stabilize IsoScore* on mini-batches during training. In stochastic
gradient descent, mini-batches of data are sampled randomly from the larger training set. We per-
form shrinkage on the mini-batch covariance matrix with a covariance matrix calculated from token
embeddings obtained from a small fraction of the training data to obtain the most accurate estimate
of mini-batch isotropy. We initialize the shrinkage matrix, g, by computing the covariance matrix
of a sample, S, of 250k points obtained from running a partial forward pass on the training data
before training with I-STAR. We update X g after each epoch during training by running a partial
forward pass on the training data. We use IsoScore™ as the penalty in our loss function to produce
stable updates during training that alter the isotropy of model representations. Figure [T]illustrates
how we incorporate IsoScore* to form our I-STAR loss. We take the union of token embeddings
from each hidden state in the model and calculate a global IsoScore* penalty to incorporate into our

200 1000 2000 3000 4000 5000
Sample Size
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loss function. We stress that shrinkage is crucial for the success of I-STAR. In Section[C, we show
that without shrinkage, the performance of models tuned with I-STAR can drop by as much as ~ 6%.

4 METHODS

CosReg. In order to compare CosReg to [-STAR, we adapt the cosine similarity regularization term
presented by (Gao et al.,[2019) and calculate our CosReg penalty on the last-layer hidden states of
the model. Let {21, xa, ..., xps } denote the mini-batch representation obtained from the last hidden
layer, X,,, of a contextualized embedding model, let ; = “;”—’H and let A € R be a tuning parameter,

then the CosReg loss function of our model is defined as:

M
Lewes = Les + A i D0 3074, ()

i i
We use A = 1 as|Gao et al.[(2019) find that using A = 1 is sufficient for altering average random
cosine similarity and that using A > 1 does not provide any additional training benefits. Since
an average cosine similarity of 1 is thought to reflect an anisotropic space and an average cosine
similarity near O reflects an isotropic space, using A = 1 is believed to encourage “isotropy” as
measured by cosine similarity (Ethayarajhl 2019). However, we show in Figure H]that CosReg
impacts the mean of embeddings but has no impact on isotropy. Namely, CosReg does not properly
regularize isotropy.

I-STAR. Figure [I] outlines the calculation of I-STAR loss. I-STAR computes a global IsoScore*
penalty from token embeddings obtained from all layers in the network. Calculating a global isotropy
penalty from the representations at every layer of the network allows the model to determine where
changing the isotropy of representations in the network will lead to the largest improvements in
performance. We examine the impact of applying I-STAR to individual layers in Section [Fin the
Appendix and find that calculating a global isotropy penalty leads to the most consistent performance.
Let X = |J;_, X; denote the union of all hidden states from a network with n layers and g, be the
shrinkage covariance matrix for epoch ¢ of training. We define our I-STAR loss as follows:

Listar = Leg + A - (1 — IsoScore* (X, ¢, ¥s,)) 2)

A negative value of A will decrease the levels of isotropy in model representations, while positive
choices of A\ will increase levels of isotropy.

Intrinsic dimensionality estimation. Previous studies have shown that compressing the intrinsic
dimension of LLLM activations in later layers is correlated with improved performance on down-
stream tasks (Recanatesi et al.,[2019). To determine the relationship between isotropy and intrinsic
dimensionality, we use TwoNN to estimate the intrinsic dimension of activations in accordance with
(Recanatesi et al.,|2019). TwoNN is a state-of-the-art intrinsic dimensionality (ID) estimator based
on the ratio between each point’s first and second nearest neighbors (Facco et al.,[2017). TwoNN is a
robust intrinsic dimensionality estimator for both linear and non-linear manifolds and is widely used
in the literature. Note that calculating TwoNN is an iterative process based on the pairwise distances
of nearest neighbors in space and is a non-differentiable operation.

4.1 EXPERIMENTAL DESIGN

Models & datasets. In this paper, we fine-tune BAppendixepbert, ALBERT (Lan et al., 2020), and
DistilBERT (Sanh et al., 2020) for nine NLP common benchmark tasks: SST-2 (Socher et al., [2013)),
QNLI (Rajpurkar et al.,2016a)), RTE (Dagan et al.| [2005), MRPC (Dolan and Brockett, |2005), QQP
(Wang et al.l [2018), COLA (Warstadt et al., [2019), STS-B (Cer et al., |2017), SST-5 [Socher et al.
(2013) and SQUAD [Rajpurkar et al.| (2016b). A detailed description of each dataset is available in
Section[El

Hyperparameters & training details. For each model and each task, we hyperparameter tune
for batch size (8, 16, 32), training epochs (3,4,5), and learning rate (le-5,3e-5,5e-5). For I-
STAR, we tune for the optimal zeta (0.2, 0.4, 0.6, 0.8) and use the tuning parameters values,
A€ {-5,-3,-1,1, 3,5}. For CosReg, we use a tuning parameter of 1 in accordance with Gao et al.
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(2019). All reported performance metrics are calculated as an average over five random seeds to
demonstrate the robustness of our results. After we perform our hyperparameter tuning, we fine-tune
our models using two 3090-RTX GPUs, use mixed-point precision training for all models/tasks, and
set a gradient accumulation step to 2.

5 RESULTS

In this section, we demonstrate that 1) there is an inverse relationship between isotropy and per-
formance; 2) CosReg implements a zero mean transform and does not improve isotropy, and 3)
increasing/decreasing isotropy using I-STAR increases/decreases the TwoNN intrinsic dimensionality
estimation of model representations.

Table 1: Performance of CosReg and I-Star for each model and task. “Base” indicates that no
regularization methods were used. For COLA, we report Matthew’s Correlation; for STS-B, we
report Pearson’s Correlation; for SQUAD, we present F1/EM. For all remaining tasks, we report
accuracy. We report the average/standard deviation over 5 random seeds. Each I-STAR value comes
from training with a negative tuning parameter. See Table [2|for more details.

Method SST-2 QNLI RTE MRPC QQP COLA STS-B SST5 SQUAD
ALBERTTSTAR | 93.08X032 9L41X043 7256:129 $7.8450.43 89.97:006 5522E161 8S91E023 55.0220.46 90.33L0.09/52.9620.04
ALBERT Base 93084024 9028042 71.34£0.81 86962032 89.98+0.06 54.56£0.93 89.07£0.20 54.23£0.30 90.320.13/82.86£0.17
ALBERT CosReg | 91.862042 90.91+£025 65994181 86914026 89.81:+£0.14 49.59+£0.90 87.984046 54.76:£0.11 90.08-0.31/82.64::0.32
BERT I-STAR 92.6550.18 89515069 62.5350.70 86.7610.57 90361005 59.6040.25 86.4410.16 50.64:0.34 87.76:0.11/80.0220.10
BERT Base 92.40+041 89.49+030 6224048 8651+021 90.44:+0.11 59.22:40.63 86.15£0.20 50.0040.28 87.02::0.11/78.82+0.25
BERT CosReg 92014023 89.67+£0.56 6152141 85291047 90.45+0.82 57.90+£0.82 86.30£0.28 49.44+0.18 86.89- 0.14/78.85:0.08
DistilBERT I-STAR | 91.4210.11 86252032 58.0550.95 84.1710.35 89.6710.08 50031093 85.2810.11 50.1310.23 83.6920.36/74.8020.27
DisilBERT Base | 91.36£0.15 87.40:0.34 56.82+0.67 83.68£0.41 89.57£0.74 50.16:0.59 84.75£026 49.48:£0.28 83.2320.18/74.04£0.12
DistilBERT CosReg | 90.941038 86.68+£0.19 57.04+£1.13 83.58+044 89.55:£0.08 4930088 84.4140.08 48.65£0.25 83474 0.34/74.40+0.24

There is an inverse relationship between isotropy and performance. In contrast to previous
studies, Figure [3] demonstrates that increasing isotropy tends to decrease performance, whereas
decreasing isotropy tends to increase performance. We observe that the trend’s strength is somewhat
task and model-dependent, with the most robust correlation emerging for SQUAD, RTE, and STS-B.
However, for both MRPC and COLA, ALBERT does not exhibit a strong correlation between isotropy
and performance. However, for both bases, the optimal tuning parameter is negative. The lack of
a distinct trend for ALBERT on MRPC and COLA is likely due to the large amounts of noise in
fine-tuning performance and isotropy values occurring on these tasks. Further, Table[T]demonstrates
that decreasing isotropy using negative tuning parameters in I-STAR improves performance over both
baseline models and CosReg on most tasks and models considered in this paper.

CosReg implements a zero-mean transform. Figure d] demonstrates that CosReg alters the mean
of model activations, particularly in a single dimension. Encouraging the average random cosine
similarity of activations to be 0 (i.e., when A = 1) forces representation to be zero-mean, whereas
encouraging an average random cosine similarity to be 1 (i.e., when A\ = —1) causes the mean of
representations to increase further. Although CosReg impacts the mean of the data, CosReg does not
increase isotropy in model representations. After fine-tuning BERT, ALBERT, and DistilBERT on
SST-2 using CosReg with a tuning-parameter value of A = 1, the last layer representations of each
model receive IsoScore* values of 0.004, 0.007, and 0.007, respectively.

Isotropy and intrinsic dimensionality estimation. Several studies have found that a lower intrinsic
dimension of later layer representations is correlated with improved performance on various down-
stream tasks (Ansuini et al.l [2019; Recanatesi et al., 2019). Figure E] demonstrates that adjusting
isotropy with I-STAR corresponds to changing the intrinsic dimension of model representations.
Importantly, encouraging isotropy in model representations does not allow for model representations
to compress into a lower dimensional manifold in later layers.

6 DISCUSSION

Our study challenges a dominant belief in the NLP literature that encouraging isotropy improves
performance on downstream tasks. In contrast to several previous works, we find that encouraging
isotropy is, in fact, detrimental to model performance and that decreasing isotropy in representations
improves performance on a broad range of tasks and models. Table [I]and Figure 3| provide strong
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Figure 3: Relationship between IsoScore* (x-axis) and model performance (y-axis). We fine-tune each
model with I-STAR using the tuning parameters A € {-5,-3,-1,0.50, 1, 3,5}. We train each model
over five random seeds and report the standard deviation of both performance and IsoScore* (X, (, X g)
values. We set ¢ = 0.2 for all computations of IsoScore*, and we compute g from a random sample
of 250,000 token embeddings from the training data.
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Figure 4: Comparing the mean activation values on the validation data for each dimension of
ALBERT, BERT, and DistilBERT fine-tuned on QNLI, with CosReg using a tuning-parameter value
of A = —1,1 and without any regularization. Trends are representative of all tasks.

empirical evidence, in support of (Zhu et al.l [2018), that anisotropy is essential for a model’s
downstream performance. Further, we demonstrate in Figure 3| that model performance degrades as

isotropy is encouraged in model representations, which supports the argument made by
(2018)) that isotropy can hinder a model’s ability to generalize to unseen examples.
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SST-2 using I-STAR with tuning-parameters A € {—5, —3,3,5}. “Base” represents the case where
no regularization is used. Trends are representative of all tasks.

The primary reason for the discrepancy between our results and several existing studies in the NLP
literature on isotropy is that previous studies have made claims using “flawed” measures of isotropy,
such as average random cosine similarity. Figure | shows that using CosReg implements a zero-mean
transform and does not improve isotropy. Given our findings that isotropy and performance are
negatively correlated and that CosReg does not adjust isotropy, we argue many of the current claims
regarding isotropy in NLP need to be reassessed.

Our findings strongly support arguments in the literature outside of NLP that anisotropy is a natural
outcome of stochastic gradient descent and that compressing representations is necessary for model
performance. Additionally, studies have shown that model representations that occupy a lower intrin-
sic dimension in the ambient vector space tend to outperform those sampled from higher dimensional
manifolds (Recanatesi et al.,[2019;|Ansuini et al.,[2019). We demonstrate that encouraging isotropy in
the embedding space increases the intrinsic dimension of model representations, which is detrimental
to performance. Importantly, we also show that reducing isotropy in the embedding space leads to
the compression of representations into a lower dimensional manifold, resulting in improved model
performance. This underscores the critical role of isotropy in determining the intrinsic dimension of
model representations and the subsequent impact on model performance.

Limitations. Although having isotropic representations is theoretically desirable for both the in-
terpretability of model decisions and for improved quantization abilities, encouraging isotropy in
pre-trained models in a way that preserves or improves downstream task performance is challenging.
This study is limited to fine-tuning LLMs, which may not provide a definitive answer to whether
encouraging isotropy in embedding space is inherently detrimental to model performance. Our
results demonstrate that encouraging isotropy in pre-trained models causes a decline in downstream
fine-tuning performance. Fine-tuning requires models to make rapid and drastic adjustments to their
representations within a limited number of training steps. A fruitful direction for future work would
consist of using I-STAR in LLM pre-training to enforce isotropic representations throughout training.

7 CONCLUSION

Previous works in NLP have argued that anisotropy in contextualized embedding models limits the
expressiveness of word representations and forces embeddings to occupy a “narrow cone” in vector
space. Although several studies have claimed that improving isotropy leads to improved performance
on downstream tasks, most current analyses are based on faulty isotropy measures, tend to be limited
to word similarity tasks where no gradient updates are made, and only investigate isotropy for
last-layer representations. We propose I-STAR, a differentiable, mini-batch-stable isotropy-based
regularization scheme, to study the relationship between fine-tuned model performance and isotropy.
Contrary to previous works in NLP, we find that further decreasing isotropy improves downstream
model performance. Fundamentally, we show that improving isotropy in embedding space increases
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the intrinsic dimensionality of model representations and causes model performance to decrease.
Given the connection between isotropy, intrinsic dimensionality, and performance, [-STAR shows
great promise for application in various areas of deep learning.

8 REPRODUCIBILITY

We have taken several steps to make our paper is as reproducible as possible. Firstly, we have made all
code used to produce the project publicly available and attached an anonymous version along with our
submission. Further, we have released a pip install of IsoScore* to facilitate future works. Secondly,
Section [Foutlines all values of the two critical hyperparameters needed to train with I-STAR loss.
Lastly, all of the datasets and models used in this paper are publicly available on Huggingface.
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Algorithm 2 IsoScore
1: Input: Let X C R? be a finite collection of points.
2: Let XPCA denote the points in X transformed by the first n principal components.
3: Define ¥p € R" as the diagonal of the covariance matrix of X4,
4: Normalize diagonal to $p := /n - Xp/||Sp||, where || - || is the standard Euclidean norm.
5: The isotropy defect is

3(X) = Ep = 1||/v/2(n = V)

where 1 = (1,...,1)T € R™.

6: X uniformly occupies
A(X) = (n = 0(X)*(n — v/n))?/n?
percent of ambient dimensions.
7: Transform ¢(X) so it can take values in [0, 1], via ¢(X) := (n- ¢(X) — 1)/(n — 1).
8: return: ((X)

A ISOSCORE VS ISOSCORE*

IsoScore(X) = IsoScore* (X, (,Cx) when ¢ = 0. Let X C R™ be a finite point cloud that we
assume is sampled from some larger distribution X such that the number of points in X is sufficiently
larger than the number of points in X. Let ¢ € (0,1) be a shrinkage parameter, and let ¥g € R"*"
be a shrinkage covariance matrix obtained from a sample of points, S, drawn from X such that
|S| >> n. We will first demonstrate that without RDA-Shrinkage (i.e. when ¢ = 0), IsoScore(X)
= IsoScore*(X, (,Xg). The key insight is that X in Step 3 of Algorithm [1|is equivalent to the
principal components of X.

Algorithm [2] shows that the first step of IsoScore is to transform X to its principal components to
get what the authors denote as Xpca. Let Xpca be the covariance matrix of Xpca, and let Xx
denote the covariance matrix of X. Projecting X to its principal components removes correlations
from the data, meaning that ¥pca Will be diagonal. Since Ypcp is a diagonal matrix, its eigenvalues
are equal to diag(Xpca). Therefore, diag(Xpca) are the principal components of Xpc 4 since
principal components are the eigenvalues of the covariance matrix. Note that principal components
are invariant under orthogonal transformations and that “reorienting” the data by PCA applies the
orthogonal transformation V7 X'V, where V are the eigenvectors of Y y. Namely, the principal
components of X are the principal components of X pc 4. For a simple proof demonstrating that the
principal components of X are invariant under any orthogonal transformation applied to X, see (Ding
et al., ) 20006). Therefore, IsoScore* is equivalent to IsoScore when no covariance matrix shrinkage
is performed. That is, when ¢ = 0, IsoScore(X) = IsoScore*(X,(,Xg) VX € RY. To see that
IsoScore(X) approaches IsoScore* (X, ¢, ¥5), we can use the Law of Large Numbers to show that

the larger the sample of X, the more close X approximates the true distribution X. Therefore,
IsoScore(X) — IsoScore* (X, ¢, Xg) as | X| increases.

Comparing Pseudocode. IsoScore* addresses two fundamental flaws in vanilla IsoScore. Firstly,
IsoScore* uses RDA-shrinkage (Friedman, |1989) to stabilize the calculation of a sample covariance
matrix. Secondly, IsoScore* removed all non-differentiable operations present in IsoScore. The
pseudocode for IsoScore and IsoScore* has two primary steps: 1) extract distribution/isotropy
information from the point cloud, S and 2) normalize the isotropy information into a score in the
closed interval [0, 1]. In Algorithm [3| Steps 3-4 calculate the covariance matrix of the point cloud
S, and perform RDA-shrinkage by taking the weighted sum of the covariance matrix of .S and a
covariance matrix of a larger distribution from which S was sampled. Step 5 then calculates the
eigenvalues from the resulting sum of covariance matrices. When we set ( in Step 4 to 0, the resulting
eigenvalues are the principal components of our sample S. All normalizing steps are identical in
IsoScore and IsoScore*. Namely, lines 6-9 in Algorithm [T]are equivalent to lines 4-7 in Algorithm [2]

Non-Differentiability of IsoScore. We want to highlight the exact step in Algorithm [2|that makes
IsoScore non-differentiable. Step 3 in Algorithm [2]involves selecting the diagonal of a covariance
matrix, which is a non-differentiable operation. Note that the non-differentiability of IsoScore does not
imply that IsoScore* is non-differentiable, even though IsoScore and IsoScore* are equivalent when
no shrinkage is performed. To further emphasize this point, consider the two functions f(z) = aVz
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and g(x) = x for all 2! = 0 and ¢g(z) = |x| when z = 0. Here, |z| indicates the absolute value
function. For all inputs z, f(x) = g(x). However, f(z) is differentiable for all values of x, where
g(x) is not differentiable when = = 0. Section demonstrates that IsoScore™ is equivalent to IsoScore
when no shrinkage is performed. IsoScore” preserves all of the desirable theoretical properties of
IsoScore while improving stability on small inputs and removing the operation that makes IsoScore
non-differentiable (namely, an iterative selection of the diagonal).

B LAYER-WISE ISOTROPY

ALBERT QNLI I-STAR BERT QNLI I-STAR DistilBERT QNLI I-STAR
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Figure 6: Layer-wise IsoScore* values for ALBERT, BERT, and DistilBERT fine-tuned with I-STAR
using tuning parameters A € {—1, 1}. IsoScore* values are calculated on the QNLI validation data
using a shrinkage parameter of ¢ = 0.2. “None” indicates that no regularize is used in fine-tuning.

When fine-tuning models with I-STAR, we compute the IsoScore* penalty from the union of all token
embeddings from each model layer. This section analyzes what layers in the model are impacted the
most by our I-STAR regularizer.

Figure [6] shows that encouraging isotropy in token embeddings using I-STAR primarily impacts early
layers in the network. Even when isotropy is encouraged using positive tuning parameter values in
I-STAR, token representations from the later layers of the network remain highly anisotropy. These
results provide further evidence that anisotropy in the form of outlier dimensions that emerge in the
last layers of the network is crucial to the model decision-making process. An interesting direction of
future work could explore applying I-STAR to various layers in the network.

C IMPACT OF THE SHRINKAGE PARAMETER ON [-STAR

In this section, we evaluate the impact of changing the shrinkage parameter, ¢, on downstream
performance when fine-tuning with I-STAR regularization. To test the effect of varying ¢, we fix all
hyperparameters found in Table and fine-tune with ¢ € {0,0.2,0.4,0.6, 0.8, 1}. We train ALBERT,
BERT, and DistilBERT on RTE. All results are reported as an average over 5 random seeds.
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Figure 7: Performance of ALBERT, BERT, and DistilBERT on RTE with changing values of (.
The red dashed line denotes the optimal value of ¢. Setting ( = 0 indicates that no shrinkage
is performed (i.e., equivalent to regularizing using IsoScore), and setting { = 1 signifies that no
mini-batch covariance information is included in the gradient updates during a backward pass.

In Section [3] we demonstrated that IsoScore systematically underestimates the actual value of point
clouds when the number of samples is lower than the dimensionality of the vector space. IsoScore*
overcomes this fundamental limitation by using shrinkage to improve the stability of the covariance
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matrix calculation. Figure [7] demonstrates the importance of using IsoScore* when computing
isotropy scores of a mini-batch. Importantly, when ( = 0 and no shrinkage is performed, the
performance of our fine-tuned model decreases by 3.85%,6.19%, and 0.76% compared to optimal
values of ( for ALBERT, BERT, and DistilBERT, respectively.

In addition to testing the utility of using covariance matrix shrinkage, test the impact of excluding
mini-batch covariance information by setting ( = 1. When ¢ = 1, IsoScore* is calculated from the
stabilizing covariance matrix, X g,, obtained by calculating the covariance matrix from a sample of
250,000 points at epoch i. Figure [7|demonstrates the utility of using mini-batch covariance matrix
information during fine-tuning as the optimal tuning parameter is always a value of ¢ € (0, 1).

D APPLYING I-STAR TO DIFFERENT LAYERS

Throughout this paper, we calculate a global isotropy penalty on the vector space of all token
embeddings from all layers in the model. Our motivation for selecting a global isotropy penalty
instead of penalizing individual layers is two-fold. Firstly, IsoScore* is a more faithful representation
of the true isotropy of the global vector space when the number of samples is large, and the sample
covariance is more likely to be full-rank, meaning that isotropy-based gradient updates will be more
stable. Secondly, selecting individual layers to penalize would drastically increase the hyperparameter
search when using I-STAR. Lastly, we ultimately decided on a global isotropy over regularizing
individual layers as a global isotropy penalty resulted in the most consistent results across different
tasks.

In this section, we fine-tune ALBERT, BERT, and DistilBERT on COLA using 5 random seeds. We
fix all hyperparameters in Table [2|except for the layer we select to apply I-STAR.
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Figure 8: Impact of applying I-STAR on different layers in ALBERT, BERT, and DistilBERT fine-
tuned on COLA. The dashed red line is the result of applying a global I-STAR penalty on all layers
of the model.

Figure [§|reports the performance of applying I-STAR to individual layers in the network. Although
regularizing individual layers in ALBERT and BERT can improve performance compared to a
global isotropy penalty, a global isotropy penalty provides much more consistent performance across
models and tasks. Namely, no consistent patterns emerge when applying I-STAR to individual layers.
However, more work is needed to determine if the occasional improvement in performance is worth
the extensive hyperparameter search induced by layer-wise [-STAR.

E DATASET DETAILS

Stanford Sentiment Treebank with 2 classes (SST-2) is a binary classification task where models must
determine whether a short movie review is positive or negative in sentiment (Socher et al.| [2013).
SST-5 is a five-class version of SST-2 where the models must determine whether a movie review
is negative, somewhat negative, neutral, or positive. QNLI is a binary natural language inference
task where models must decide whether or not a given answer is entailed from a specified question
(Wang et al.| 2018)). Stanford Question Answering Dataset V1 (SQUAD)is an extractive question-
answering task where a model must select the span of text in a passage that answers a given question
(Rajpurkar et al.| 2016b). Recognizing Textual Entailment (RTE) is a binary classification task where
a model must determine if a given sentence logically follows a preceding sentence. STS-B (Semantic
Textual Similarity Benchmark) is a collection of sentence pairs annotated with a similarity score from
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1-5. STS-B is commonly evaluated with Pearson’s correlation coefficient. The Microsoft Research
Paraphrase Corpus (MRPC) tasks models with determining if a pair of sentence are paraphrases of
each other (i.e. semantically equivalent). Quora Question Pairs (QQP) consists of question pairs
from Quora. Models must determine if the sentence pairs are semantically equivalent. Corpus
of Linguistic Acceptability (COLA) task models to determine if a given string is a linguistically
acceptable sentence. Note that SST-2, QNLI, RTE, MRPC, STS-B, QQP and MRPC are all datasets
in the GLUE benchmark (Wang et al., 2018).

F I-STAR HYPERPARAMETERS

Table 2: Optimal I-STAR hyperparameter values of the tuning parameter, A and shrinkage parameter,
¢. We searched over A € {—5,—-3,—1,1,3,5} and ¢ € {0.2,0.4,0.6,0.8}. We present results as
A | ¢. Note that all values of A are negative, meaning I-STAR will decrease isotropy in embedding
space.

Method SST-2 QNLI RTE MRPC QQP COLA STS-B SST-5 SQUAD Avg.

ALBERT I-STAR -1]02 -1]02 -1/08 -1]04 -1|02 -1]/0.8 -1|04 -1]/0.2 -5[0.2 | -1.4410.36
BERT I-STAR 02 -1/04 -1/08 -1/06 -1/02 -1[08 -1|0.2 02 -3|06 | -2.1110.44
DistilBERT I-STAR 06 -1/02 -1]/06 -1/08 -1/02 -3|/04 -3[/04 02 -5]/02 | -2.3310.40

-

o
T O

o
= ot

In this Section, we outline the optimal hyperparameters used in I-STAR for each task and each model.
I-STAR requires two key hyperparameters: A, the tuning parameter, and (, the shrinkage parameter.
Recall that the tuning parameter controls both the strength of the signal of the IsoScore* in the loss
function and whether isotropy is encouraged or discouraged in model representations. Namely, when
A > 0, I-STAR will increase isotropy in the embedding space, and when A < 0, I-STAR will decrease
isotropy in the embedding space. The shrinkage parameter, (, determines how much covariance
information comes from a sample point cloud, X, and how much covariance information comes from
C). For all tasks and models, we limit our hyperparameter search to A € {—5,—3,—1,1,3,5} and
¢ €{0.2,0.4,0.6,0.8}. Note that all optimal tuning parameter values occur when \ < 0, meaning
further decreasing isotropy leads to better performance gains than encouraging isotropy.
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Table 3: Pearson correlation coefficient / p-value

Model

QQP RTE MRPC CoLA STS-B

BERT
ALBERT
DistBERT

—0.573/0.001 —0.418/0.012 —0.115/0.511 —0.227/0.190 —0.677,/0.001
—0.469/0.009 —0.424/0.011 —0.184/0.330  0.195/0.261  —0.624/0.004
—0.319/0.062 —0.840/0.003 —0.532/0.003 —0.641/0.003 —0.713/0.005

17



	Introduction
	Related work
	Measuring isotropy

	IsoScore
	Methods
	Experimental design

	Results
	Discussion
	Conclusion
	Reproducibility
	IsoScore vs IsoScore
	Layer-wise isotropy
	Impact of the Shrinkage Parameter on I-STAR
	Applying I-STAR to Different Layers
	Dataset Details
	I-STAR Hyperparameters

