
Web2Text: Deep Structured Boilerplate Removal

Thijs Vogels, Octavian-Eugen Ganea and Carsten Eickhoff

Department of Computer Science,
ETH Zurich,
Switzerland

firstname.lastname@inf.ethz.ch

Abstract. Web pages are a valuable source of information for many
natural language processing and information retrieval tasks. Extracting
the main content from those documents is essential for the performance
of derived applications. To address this issue, we introduce a novel model
that performs sequence labeling to collectively classify all text elements
in an HTML page as either boilerplate or main content. Our method
uses convolutional networks on top of DOM tree features to learn unary
classification potentials for each block of text on the page and pairwise
potentials for each pair of neighboring text blocks. We find the the
most likely labeling according to these potentials using the Viterbi algo-
rithm. The proposed method improves page cleaning performance on the
CleanEval benchmark compared to the state-of-the-art. As a component
of information retrieval pipelines it improves retrieval performance on
the ClueWeb12 collection.

1 Introduction

Modern methods in natural language processing and information retrieval are
heavily dependent on large collections of text. The World Wide Web is an inex-
haustible source of content for such applications. However, a common problem is
that Web pages include not only main content, but also ads, link lists, naviga-
tion, previews of other articles, banners, etc. This boilerplate/template content
has often been shown to have negative effects on the performance of derived
applications [16,26].

The task of separating main text in a Web page from the remaining content
is known in the literature as “boilerplate removal”, “Web page segmentation” or
“content extraction”. Established popular methods for this problem use rule-based
or machine learning algorithms. The most successful approaches first perform a
splitting of an input Web page into text blocks, followed by a binary labeling of
each block as either main content or boilerplate.

In this paper, we propose a neural network model for boilerplate removal. In
addition to traditional features, our method leverages the representational power
of convolutional networks to learn unary and pairwise classification potentials for
the sequence of text blocks in a page based on complex non-linear combinations
of DOM based features. We find the labeling that maximizes the joint label

2

sequence probability using the Viterbi algorithm. The effectiveness of our method
is demonstrated on a number of standard benchmarking datasets.

The remainder of this document is structured as follows. Section 2 gives an
overview of related work. Section 3 formally defines the main-content extraction
problem, introduces the block segmentation procedure and details our model.
Section 4 empirically demonstrates the merit of our method on several benchmark
datasets for content extraction and document retrieval.

2 Related Work

Early approaches to HTML boilerplate removal use a range of heuristics and
rule-based methods. Finn et al. [7] design an effective system called Body Text
Extractor (BTE). Their method relies on the observation that the main content
contains longer paragraphs of uninterrupted text, where HTML tags occur less
frequently compared to the rest of the Web page. Looking at the cumulative
distribution of tags as a function of the position in the document, Finn et al.
identify a flat region in the middle of this distribution graph to be the main
content of the page. While simple, their algorithm has two drawbacks: (1) it only
makes use of the location of HTML tags and not of their structure, thus losing
potentially valuable information, and (2) it can only identify one continuous
stretch of main content which is unrealistic for a considerable percentage of
modern Web pages.

To address these issues, several other algorithms have been designed to operate
on DOM trees, thus leveraging the semantics of the HTML structure [12,20,6].
The problem with these early methods is that they make intensive use of the fact
that pages used to be partitioned into sections by <table> tags, which is not a
valid assumption anymore nowadays.

In the next line of work, the DOM structure is used to jointly process multiple
pages from the same domain, relying on their structural similarities. This approach
was pioneered by Yi et al. [26] and was improved by various others [15,25]. These
methods are very suitable for detecting template content that is present in all
pages of a website, but have poor performance on websites that use a single
template across the whole site. In this paper we focus on single-page content
extraction without exploiting the context of other pages from the same site.

Gottron et al. [11] propose Document Slope Curves and Content Code Blurring
methods that are able to identify multiple disconnected content regions. The
latter method parses the HTML source code as a vector of 1’s, representing pieces
of text, and 0’s, representing tags. This vector is then smoothed iteratively, such
that eventually it finds active regions where text dominates (content) and inactive
regions where tags dominate (boilerplate). This idea of smoothing is adopted
by others [21], some of which extend the concept to also deal with the DOM
structure [4,24]. Chakrabarti et al. [3] assign a likelihood of being content to each
leaf of the DOM tree while using isotonic smoothing to combine the likelihoods
of neighbors with the same parents. In a similar direction, Sun et al. [24] use

3

both the tag/text ratio and DOM tree information to propagate DensitySums
through the tree.

Machine learning methods offer a convenient way to combine various indicators
of “contentness”, automatically weighting hand-crafted features according to their
relative importance. The FIASCO system by Bauer et al. [2] uses Support Vector
Machines (SVM) to classify HTML blocks. These blocks are generated through a
DOM-based segmentation of the page and are represented by linguistic, structural
and visual features. Similar works of Kohlschütter et al. [16,18] employ decision
trees and SVMs to independently classify blocks. Neunerdt et al. [22] extend
this approach by reformulating the classification problem as a case of sequence
labeling where all blocks are jointly tagged. They use conditional random fields
to take advantage of correlations between the labels of neighboring content
blocks. A similar approach [23] proved to be the most successful in the CleanEval
competition [1].

In this paper, we propose a more effective set of block features that capture
information from adjacent neighbors in the DOM tree. Additionally, we employ a
deep learning framework to automatically learn non-linear interactions between
these features as well as among neighboring text blocks, giving the model an
advantage over traditional linear approaches. Finally, we jointly optimize the
labels for the whole web page according to local potentials predicted by the
neural networks.

3 Web2Text

Boilerplate removal is defined as the problem of labeling sections of the text of a
Web page as main content or boilerplate (anything else) [1]. In the following, we
discuss the various steps of our method. The complete pipeline is also illustrated
in Figure 1.

3.1 Preprocessing

We expect raw Web page input to be written in (X)HTML markup. Each
document is parsed as a Document Object Model tree (DOM tree) using Jsoup [13].
The first step of our algorithm is to preprocess the DOM tree by:

– Removing empty nodes or nodes containing only whitespace.
– Removing nodes that do not have any content we can extract: e.g.
,

<checkbox>, <head>, <hr>, <iframe>, , <input>.

We make use of DOM tree structure through the notion of parents and
grandparents. In a raw DOM tree, however, these relationships are not always
meaningful. Figure 2 shows a typical fragment of a DOM tree where two neighbor-
ing links share the same semantic parent () but not the same DOM parent.
To improve the semantics of features based on tree relationships such as “the
number of children of a node’s parent”, we recursively merge nodes with exactly
one child with the child. We call the resulting tree-structure the Collapsed DOM
(CDOM).

4

Collapsed DOM Blocks Features Predicted
labels

Potentials
Unary + Pairwise

2 CNNs Viterbi

0 1

0 1

11100100

11100100

0 1

Fig. 1. The Web2Text pipeline. The leaves of the Collapsed DOM tree of a Web
page form an ordered sequence of blocks to be labeled. For each block, we extract
a number of DOM tree based features. Two convolutional networks operating on
this feature representation yield two respective sets of potentials: unary potentials
pi(content), pi(boilerplate) for each block i and pairwise potentials pij(content →
content), pij(content → boilerplate), pij(boilerplate → content), pij(boilerplate →
boilerplate) for each pair of neighboring blocks (i, j). Using the Viterbi algorithm, we
find an optimal labeling that maximizes the total sequence probability as predicted by
the neural networks.

3.2 Block Segmentation

Our content extraction algorithm is based on sequence labeling. A Web page is
treated as a sequence of blocks that are labeled main content or boilerplate. There
are multiple ways to split a Web page into blocks, ranging from letter-by-letter
to paragraph-by-paragraph. The most popular methods currently used are:

i) Lines in the HTML file. In many HTML files, new sections will start on
a new line in the file, therefore some authors use the lines of the source code as
their splitting criterion. Unfortunately this does not work on minified Web pages
that are stripped of white space or pages that make excessive use of newlines.

ii) DOM leaves. Sections on a page that require different labels are usually
separated by at least one HTML tag. Therefore, it is safe to consider DOM leaves
(#text nodes) as the blocks of our sequence. The disadvantage of this approach
is that a hyperlink in a text paragraph can receive a different label than its
neighboring text.

iii) Block-level DOM leaves. A mixed approach would be to only use
block-level DOM nodes (<p>, <div>, <table>, <td>,
 etc.) for splitting.
These are tags that start (by default) on a new line in the formatted page in
most browsers. The issue with this method is that, with CSS, block-level nodes
can be restyled as inline. Therefore, this separation can be dangerous. Moreover,
sometimes it makes sense to remove links from a paragraph.

We opt for using the most flexible DOM leaves strategy. Under this scheme,
an empirical evaluation shows no cases where parts of a paragraph are wrongly
labeled boilerplate while the rest of the paragraph is marked main content.

5

li

ul

li

a

#text

a

#text
li / a / #text

ul

li / a / #text

 Link 1
 Link 2

Fig. 2. Collapsed DOM: To improve the expressiveness of tree-based features, we
recursively merge DOM nodes with exactly one child with their child into a single
grouped node. Left : HTML source code, middle: the corresponding DOM tree, right :
the corresponding Collapsed DOM.

Table 1. Overview of extracted node features.

logNCharacters log(number of characters in the node)
rWords number of words / words on the page
nSentences number of sentences in the node
rPunctuation number of characters ∈ {, , ?, ; , :, !} / number of characters in node
rDashes number of characters in ∈ {−,_, /, \} / number of characters in node
rPeriods number of periods / number of characters in node
rCharsInLink number of characters in anchor tags / number of characters in node
endsWithPunctuation 1 if the node ends with punctuation, 0 otherwise
endsWithQuestionMark 1 if the node ends with a question mark 0 otherwise
rWordsWithCapital ratio of the words in the node starting with a capital letter
rStopwords ratio of the words that are in our English stop-word list
avgWordLength average word length in the node
startRel start position of the node in the source code / source length
endRel end position of the node in the source code / source length

3.3 Feature Extraction

Features are properties of a node that may be indicative of it being content or
boilerplate. Such features can be based on the node’s text, CDOM structure or a
combination thereof. Examples are the number of characters in the node, number
of punctuation marks, ratio of HTML tags to text in the node string, etc. Table 1
gives a complete overview of the features we collect for any CDOM node. Some
of them are inspired by features used in other works such as [23].

The Web page content to be labeled is a sequence of text blocks, each
corresponding to a CDOM node. For each such block, we collect block features,
consisting of the features extracted for the blocks CDOM node, the parent CDOM
node and the grandparent CDOM node.

Furthermore, we capture interactions between adjacent blocks using tree
features. These allow the learning algorithm to retain some of the tree structure
of the original CDOM while operating on a linear sequence of blocks. Some
examples use the following binary features:

– Blocks have the same parent / grandparent / grand-grandparent
– Blocks have the same tag / class name

6

– Blocks have the same tag path (e.g. body>div>ul>
li.navitem>a>#text)

3.4 CNN Unary and Pairwise Potentials

We use convolutional neural networks to assign unary potentials to each text
block to be labeled and pairwise potentials to each pair of neighboring text
blocks. The unary potentials pi(content), pi(boilerplate) are the probability that
a text block i is content or boilerplate, respectively. The two potentials sum to
one. The pairwise potentials pij(content→ content), pij(content→ boilerplate),
pij(boilerplate→ content), pij(boilerplate→ boilerplate) are probabilities that
between a pair of neighboring text blocks (i, j) there is a transition from one
label (content/boilerplate) to another. The pairwise potentials also sum to one
for each text block pair.

For both sets of potentials, we employ convolutional neural networks with
identical architectures. We use 7 layers, ReLU non-linearity, dropout with rate
0.2, a convolution filter size of 3 in each layer, and a convolution “depth” of 50
per layer, except for the last CNN layer where 10 filters are used. The CNNs
receive the same input – a sequence of feature representations of the sequence of
text blocks to be labeled – and output potentials for each block. The outputs
for the unary network are 2 values per block that are normalized using softmax
regression. The outputs for the pairwise network are 4 values per block that are
normalized in the same way. This model is implemented in TensorFlow and our
source code is available at 1.

3.5 Inference

The joint prediction of the most likely sequence of labels given an input Web
page works as follows. We denote the sequence of text blocks on the page as
(b0, b1, . . . , bn) and write the probability of a corresponding labeling (`0, `1, . . . , `n) ∈
{0, 1}n being the correct one as

p(`0, . . . , `n) = p0(`0) · · · pn(`n) · p01(`0 → `1) · · · p(n−1)n(`n−1 → `n).

This expression can be maximized using the Viterbi algorithm [8] to find the
optimal labeling given the predicted CNN potentials.

4 Experiments

Our experiments are grouped in two stages. We begin by assessing Web2Text’s
performance at boilerplate removal on a high-quality manually annotated corpus
of Web pages. In a second step, we turn towards a much larger collection and
investigate how improved content extraction results in superior information
retrieval quality. Both experiments clearly highlight the benefits of Web2Text
over state-of-the-art alternatives.
1 https://github.com/dalab/web2text

7

Table 2. Boilerplate removal performance comparison.

Method Acc Precision Recall F1

CRF [23] 0.82 0.88 0.81 0.84
BTE [7] 0.75 0.76 0.84 0.80
default-ext [17] 0.79 0.89 0.74 0.81
article-ext [17] 0.67 0.89 0.50 0.64
largest-ext [17] 0.59 0.93∗ 0.33 0.48
Unfluff [9] 0.68 0.90 0.51 0.65
Web2Text 0.88∗ 0.89 0.91∗ 0.90∗

4.1 Training Data

CleanEval 2007 [1] is the largest publicly available training set for this task.
It contains approximately 1000 manually labeled Web pages of training data
and a predefined held-out test set. However, this corpus has the disadvantage
of providing only pairs of Web pages and corresponding cleaned extracted text
(manually annotated), without the true block labeling. To recover this annotation
needed for our algorithm, we use dynamic programming to align the clean text
with the original Web page blocks. This method uses a simple heuristic. Random
parts of the cleaned text are checked for uniqueness in the original page. If such
a unique match is found, then it can be used to divide both the cleaned text and
the original Web page in two parts on which the same matching method can be
applied recursively.

4.2 Boilerplate Removal Performance

The first stage of our empirical performance evaluation relies on the test set of
the CleanEval competition [1] and intrinsically compares the boilerplate removal
performance of Web2Text to a wide range of methods described in the literature
or deployed in popular libraries. Table 2 shows the results of this experiment.
Statistical significance of performance differences between the proposed models
and all baselines is determined using a Wilcoxon signed-rank test with α < 0.05
and is denoted by an asterisk. We can note that Web2Text matches state-of-
the-art precision while greatly excelling in terms of recall, giving it a significant
overall performance margin in terms of F1 scores as compared to popular baselines
including previous CleanEval winners. Note that these numbers are obtained
by evaluating each method using the same block segmentation; the DOM leaves
strategy described in Section 3.2.

4.3 Impact on Retrieval Performance

Besides the previously presented intrinsic evaluation of text extraction accuracy,
we are interested in the performance gains that other derived tasks experience
when operating on the output of boilerplate removal systems of varying quality.
To this end, our extrinsic evaluation studies the task of ad hoc document retrieval.

8

It is conceivable that search engines that index high-quality output of text
extraction systems should be better able to answer a given user-formulated query
than systems indexing raw HTML or naïvely cleaned content. Our experiments
are based on the well-known ClueWeb12 collection of Web pages.2 It is organized
in two well-defined document sets, the full CW12-A corpus of 733M organic Web
documents (27.3 TB of uncompressed text) as well as the smaller, randomly
sampled subset CW12-B of 52M documents (1.95 TB of uncompressed text).
The collection is indexed using the Indri search engine and retrieval runs are
conducted using two state-of-the-art probabilistic retrieval models; The query
likelihood model [14] (QL) as well as a relevance-based language model [19] (RM).
Our 50 test queries alongside their relevance judgments originate from the 2013
edition of the TREC Web Track [5].

Table 3 highlights the performance of each combination of retrieval model
and collection when indexing either raw or cleaned Web content. Within each
combination, statistical significance of performance differences between raw and
cleaned HTML content is denoted by an asterisk. Models that significantly
outperform all other text extraction methods are indicated by †. We can note
that, in general, retrieval systems indexing CW12-A deliver stronger results than
those operating only on the CW12-B subset. Due to the random sampling process,
many potentially relevant documents are missing from this smaller collection.
Similarly, across all comparable settings, the query likelihood model (QL) performs
significantly better than the relevance model (RM). As hypothesised earlier, text
extraction can influence the quality of subsequent document retrieval. We note
that low-recall methods (BTE, article-ext, largest-ext, Unfluff) cause losses in
retrieval performance, as relevant pieces of content are incorrectly removed as
boilerplate. At the same time, the most accurate models (CRF, Web2Text) were
able to introduce considerable improvements across all metrics. Web2Text, in
particular, outperformed all baselines at significance level 0.05.

5 Conclusion

This paper presents a novel algorithm for main content extraction from Web
pages. The method combines the virtues of popular sequence labeling approaches
such as CRFs [10] with deep learning methods that leverage the DOM structure as
a source of information. Our experimental evaluation on CleanEval benchmarking
data shows significant performance gains over all state-of-the-art methods. In
a second set of experiments, we demonstrate how highly accurate boilerplate
removal can significantly increase the performance of derived tasks such as ad
hoc retrieval.

2 http://lemurproject.org/clueweb12/

9

Table 3. The effect of boilerplate removal on ad hoc retrieval performance.

Collection Ret. Model Method P@10 R@10 F1@10 MAP nDCG
CW12-A QL raw content 0.316 0.056 0.095 0.137 0.459
CW12-A QL CRF [23] 0.342* 0.068* 0.113* 0.147* 0.543*
CW12-A QL BTE [7] 0.301 0.048 0.083 0.128 0.435
CW12-A QL default-ext [17] 0.318 0.055 0.094 0.138 0.462
CW12-A QL article-ext [17] 0.298 0.049 0.084 0.126 0.433
CW12-A QL largest-ext [17] 0.279 0.044 0.076 0.112 0.417
CW12-A QL Unfluff [9] 0.304 0.051 0.087 0.128 0.428
CW12-A QL Web2Text 0.361*† 0.079*† 0.130*† 0.154*† 0.578*†

CW12-A RM raw content 0.278 0.048 0.082 0.121 0.439
CW12-A RM CRF [23] 0.301* 0.057* 0.096* 0.138* 0.487*
CW12-A RM BTE [7] 0.262 0.041 0.071 0.110 0.409
CW12-A RM default-ext [17] 0.277 0.048 0.082 0.123 0.442
CW12-A RM article-ext [17] 0.260 0.039 0.068 0.109 0.411
CW12-A RM largest-ext [17] 0.248 0.032 0.057 0.097 0.401
CW12-A RM Unfluff [9] 0.264 0.041 0.071 0.111 0.407
CW12-A RM Web2Text 0.325*† 0.069*† 0.114*† 0.145*† 0.525*†

CW12-B QL raw content 0.210 0.025 0.045 0.037 0.134
CW12-B QL CRF [23] 0.241* 0.031* 0.055* 0.048* 0.165*
CW12-B QL BTE [7] 0.193 0.019 0.035 0.030 0.121
CW12-B QL default-ext [17] 0.212 0.026 0.046 0.038 0.132
CW12-B QL article-ext [17] 0.199 0.017 0.031 0.031 0.120
CW12-B QL largest-ext [17] 0.178 0.015 0.028 0.024 0.107
CW12-B QL Unfluff [9] 0.195 0.020 0.036 0.029 0.121
CW12-B QL Web2Text 0.266*† 0.038*† 0.067*† 0.055*† 0.181*†

CW12-B RM raw content 0.172 0.021 0.037 0.030 0.122
CW12-B RM CRF [23] 0.198* 0.028* 0.049* 0.041* 0.143*
CW12-B RM BTE [7] 0.158 0.015 0.027 0.022 0.111
CW12-B RM default-ext [17] 0.170 0.020 0.036 0.029 0.124
CW12-B RM article-ext [17] 0.156 0.015 0.027 0.019 0.109
CW12-B RM largest-ext [17] 0.145 0.013 0.024 0.015 0.095
CW12-B RM Unfluff [9] 0.159 0.016 0.029 0.021 0.112
CW12-B RM Web2Text 0.213*† 0.032*† 0.056*† 0.046*† 0.165*†

10

References

1. Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. CleanEval: a
competition for cleaning web pages. In LREC, 2008.

2. Daniel Bauer, Judith Degen, Xiaoye Deng, Priska Herger, Jan Gasthaus, Eugenie
Giesbrecht, Lina Jansen, Christin Kalina, Thorben Krüger, Robert Märtin, Martin
Schmidt, Simon Scholler, Johannes Steger, Egon Stemle, and Stefan Evert. FIASCO:
Filtering the internet by automatic subtree classification, osnabruck. In Building
and Exploring Web Corpora: Proceedings of the 3rd Web as Corpus Workshop,
incorporating CleanEval, volume 4, pages 111–121, 2007.

3. Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. Page-level template
detection via isotonic smoothing. In Proceedings of the 16th international conference
on World Wide Web, pages 61–70. ACM, 2007.

4. Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach
to webpage segmentation. In Proceedings of the 17th international conference on
World Wide Web, pages 377–386. ACM, 2008.

5. Kevyn Collins-Thompson, Paul Bennett, Fernando Diaz, Charlie Clarke, and Ellen
Voorhees. Overview of the TREC 2013 web track. In Proceedings of the 22nd Text
Retrieval Conference (TREC’13), 2013.

6. Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C Lee Giles. Automatic identifi-
cation of informative sections of web pages. IEEE transactions on knowledge and
data engineering, 17(9):1233–1246, 2005.

7. Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Fact or fiction: Content
classification for digital libraries. Unrefereed, 2001.

8. G David Forney. The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,
1973.

9. Adam Geitgey. Unfluff – an automatic web page content extractor for node.js!,
2014.

10. John Gibson, Ben Wellner, and Susan Lubar. Adaptive web-page content identi-
fication. In Proceedings of the 9th annual ACM international workshop on Web
information and data management, pages 105–112. ACM, 2007.

11. Thomas Gottron. Content code blurring: A new approach to content extraction.
In Database and Expert Systems Application, 2008. DEXA’08. 19th International
Workshop on, pages 29–33. IEEE, 2008.

12. Suhit Gupta, Gail Kaiser, David Neistadt, and Peter Grimm. DOM-based content
extraction of HTML documents. In Proceedings of the 12th international conference
on World Wide Web, pages 207–214. ACM, 2003.

13. Jonathan Hedley. Jsoup HTML parser, 2009.
14. Rong Jin, Alex G Hauptmann, and ChengXiang Zhai. Language model for in-

formation retrieval. In Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 42–48.
ACM, 2002.

15. Hung-Yu Kao, Jan-Ming Ho, and Ming-Syan Chen. Wisdom: Web intrapage
informative structure mining based on document object model. IEEE Transactions
on Knowledge and Data Engineering, 17(5):614–627, 2005.

16. Christian Kohlschütter. A densitometric analysis of web template content. In
Proceedings of the 18th international conference on World wide web, pages 1165–
1166. ACM, 2009.

17. Christian Kohlschütter et al. Boilerpipe – boilerplate removal and fulltext extraction
from HTML pages. Google Code, 2010.

11

18. Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate detec-
tion using shallow text features. In Proceedings of the third ACM international
conference on Web search and data mining, pages 441–450. ACM, 2010.

19. Victor Lavrenko and W Bruce Croft. Relevance based language models. In
Proceedings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 120–127. ACM, 2001.

20. Shian-Hua Lin and Jan-Ming Ho. Discovering informative content blocks from web
documents. In Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 588–593. ACM, 2002.

21. Hadi Mohammadzadeh, Thomas Gottron, Franz Schweiggert, and Gholamreza
Nakhaeizadeh. Extracting the main content of web documents based on character
encoding and a naive smoothing method. In Software and Data Technologies, pages
217–236. Springer, 2011.

22. Melanie Neunerdt, Eva Reimer, Michael Reyer, and Rudolf Mathar. Enhanced web
page cleaning for constructing social media text corpora. In Information Science
and Applications, pages 665–672. Springer, 2015.

23. Miroslav Spousta, Michal Marek, and Pavel Pecina. Victor: the web-page cleaning
tool. In 4th Web as Corpus Workshop (WAC4)-Can we beat Google, pages 12–17,
2008.

24. Fei Sun, Dandan Song, and Lejian Liao. Dom based content extraction via text
density. In Proceedings of the 34th international ACM SIGIR conference on Research
and development in Information Retrieval, pages 245–254. ACM, 2011.

25. Karane Vieira, Altigran S Da Silva, Nick Pinto, Edleno S De Moura, Joao Cavalcanti,
and Juliana Freire. A fast and robust method for web page template detection and
removal. In Proceedings of the 15th ACM international conference on Information
and knowledge management, pages 258–267. ACM, 2006.

26. Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web pages for
data mining. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 296–305. ACM, 2003.

	Web2Text: Deep Structured Boilerplate Removal

