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Abstract 
In response to the 2023 George B. Moody PhysioNet 
Challenge, we propose an automated, unsupervised pre-
training approach to boost the performance of models that 
predict neurologic outcomes after cardiac arrest. Our 
team, (BrownBAI), developed a model architecture 
consisting of three parts: a pre-processor to convert raw 
electroencephalograms (EEGs) into two-dimensional 
spectrograms, a three-layer convolutional neural network 
(CNN) encoder for unsupervised pre-training, and a time 
series transformer (TST) model. We trained the CNN 
encoder on unlabeled five-minute EEG samples from the 
Temple University EEG Corpus (TUEG), which included 
more than 20x the patients available in the PhysioNet 
competition training dataset. We then incorporated the 
pre-trained encoder into the TST as a base layer and 
trained the composite model as a classifier on EEGs from 
the 2023 PhysioNet Challenge dataset. Our team was not 
able to submit an official competition entry and was 
therefore not scored on the test set. However, in a side-by-
side comparison on the competition training dataset, our 
model performed better with a pretrained (competition 
score 0.351), rather than randomly initialized (competition 
score 0.211) CNN encoder layer. These results show the 
potential benefits of leveraging unlabeled data to boost 
task-specific performance of predictive EEG models. 

 
1.  Introduction 
 The 2023 George B. Moody PhysioNet Challenge 
(1) invited participants to predict neurological recovery in 
comatose patients following cardiac arrest through 

automated analysis of EEG, ECG, and summary clinical 
data. As noted in the challenge description, EEG data, 
which reflects spontaneous electrical activity in the brain, 
has long been used for neurological prognostication, but 
requires time-intensive and ideally real-time analysis by 
specialized medical professionals (1). Computational 
approaches have the potential to both automate and 
enhance this analysis. 
 In response to this challenge, our team focused on 
leveraging additional unlabeled EEG data not available 
within the official competition dataset to allow us to take 
advantage of more sophisticated machine learning models. 
Clinical dataset curation is a resource and time-intensive 
endeavor, evidenced by the PhysioNet Challenge dataset 
development process itself, which spanned several years 
and necessitated the support of large research grants. The 
result is a dataset that is undoubtedly the largest and 
highest quality for the specific problem of predicting 
neurological recovery after cardiac arrest (2, 3). And yet, 
the 1,020 included patients fall short of the millions of 
independent samples often required for modern deep 
learning models in mainstream machine learning fields 
such as computer vision (4). In these fields, a technique 
known as transfer learning is commonly used to take 
advantage of widely available unlabeled data to build base 
models which can then be further trained (i.e. “fine-tuned”) 
on more specific prediction tasks with smaller amounts of 
labeled data (5). 

While large unlabeled clinical data are not as readily 
available as the public-domain internet data used by these 
other models, there is a growing number of large, general 
use clinical datasets available for research. In this study, 
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we used the Temple University EEG Corpus (TUEG) (6), 
with over twenty times the number of patients as the 
PhysioNet Challenge dataset, to pretrain a base EEG model 
before fine-tuning on the competition task of post cardiac 
arrest neurological prognostication. We hypothesized that 
models of post cardiac arrest prognostication can benefit 
from unsupervised pretraining on larger unlabeled datasets 
before being trained on the goal classification task. 

 
2. Methods 
2.1 EEG Signal Pre-Processing Pipeline 

In attempting to pretrain our model on one dataset 
(TUEG) and fine-tune on another (the PhysioNet 
Challenge dataset), it was essential to build a data 
processing pipeline that reduced inter-dataset variability as 
much as possible. Our data processing pipeline also served 
to compress the raw EEG signal, which consisted of 30,000 
data points per five-minute recording, into a smaller, more 
information-dense representation. These data processing 
steps were applied to both the unlabeled TUEG pretraining 
dataset and the labeled PhysioNet dataset. 

First, we standardized each channel of the raw 
EEG data. To account for outliers in the signal due to 
artifacts, the scaling process centered the data for each 
channel on the channel’s median value and scaled it 
according to the interquartile range as implemented in 
scikit-learn’s robust_scale function. Next, a zero-phase 
low-pass finite impulse response filter was applied using 
the Scipy resample_poly function to remove high-
frequency noise from the EEG signal while introducing 
minimal signal distortion. EEGs in the TUEG dataset 
included studies sampled at alternate frequencies than the 
standard 100 Hz sampling found in the challenge dataset. 
The resample_poly function was also used to resample the 
signal up or down to 100 Hz. Recordings in the TUEG 
dataset were also truncated to five minutes to match the 
challenge dataset. To avoid padding short recordings only 
TUEG patients with recordings greater than five minutes 
were selected for inclusion. To avoid including potentially 
noisy segments at the beginning and end of the recordings, 
only the middle five minutes of these arbitrarily long 
recordings were included in the final pretraining dataset. 
As a final step, the 18 unipolar TUEG channels were re-
referenced to match the PhysioNet bipolar channels using 
the MNE library’s set_bipolar_reference function. 
 
2.2 Spectrogram Generation 

Following pre-processing, the recordings were 
converted to spectrograms: two-dimensional matrix 
representations of the EEG signal with time plotted against 
frequency (Figure 1). Spectrograms were generated by 
taking consecutive Fourier transformations of overlapping 
windows of the EEG signal such that the value of the 

spectrogram at a given frequency f and time t represents 
the intensity of that frequency in a window of the EEG 
signal centered around that time. The default values of the 
SciPy signal.spectrogram method were used for the size of 
windows used to generate the spectrograms as well as for 
the window overlap. Spectrograms were generated for 
each channel in each EEG recording. Spectrogram 
frequencies were clipped to between 0.5 and 30 Hz, a band 
of frequencies that includes all four EEG wave classes 
(delta, theta, alpha, and beta). The result was uniform-
shaped multi-channel 18 x 75 x 133 spectrograms (EEG 
channels x frequency x time). 

 
Figure 1: An example spectrogram representing a single 

channel of EEG data. 

2.3 Model Details 
Our model architecture consisted of two parts: (1) 

a three-layer convolutional neural network (CNN) encoder 
that took 18 x 75 x 133 spectrograms as input and returned 
128 x 364 representations of the original data and (2) a time 
series transformer (TST) that operated on the spectrogram 
representations generated by the encoder to estimate the 
probability of neurological recovery. The CNN was chosen 
for the first part of this model architecture because it is 
designed to handle three-dimensional (number of channels 
x height x width) image data like the EEG spectrograms 
generated by our data processing pipeline (7). As an 
encoder, the CNN was also necessary to further reduce the 
size of the input EEG data before it was passed to the TST. 
For a given input vector, the TST’s memory requirements 
are more substantial than the CNN. Encoding the input 
spectrograms into a more information-dense representation 
allowed us to test versions of the TST with more memory 
requirements than we otherwise would have been able to if 
the data was passed to the TST unencoded.  

The second layer of our model architecture, the 
TST, is a modern transformer-based deep learning model 
designed specifically for multivariate time series 
classification tasks, such as the 2023 PhysioNet challenge 
(8). The TST was used because it has been shown to 
achieve state-of-the art performance on a variety of non-
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medical timeseries classification tasks and has even been 
applied successfully to EEG classification tasks (9). The 
TST is configurable with nine hyperparameters, as shown 
in Table 1. We used the suggested hyperparameters 
presented in the original paper that were shown to be 
generally high performing on the benchmark tasks on 
which the TST was originally tested, with one exception: 
the batch size was reduced from 128 to 32. 

 
Parameter Name  Value 
Activation  Gaussian Error Linear Unit 
Dropout 0.1 
Learning Rate 0.001 
Positional Encoding Learnable 
Model Dimension 128 
Num Attention Heads 16 
Num Encoder Blocks 3 
Batch Size 32 

Table 1. The hyperparameters used for our implementation of the 
TST.    

Two different versions of this two-part model 
architecture were tested: (1) a pretrained version, where the 
CNN encoder was first trained using the larger TUEG 
dataset to generate spectrogram representations with 
minimal information loss before being combined with the 
TST classification module and (2) an un-pretrained version 
where the weights of the CNN encoder were randomly 
initialized. In both versions, the weights of the CNN layer 
were fine-tuned, rather than frozen. 

To pretrain the CNN encoder, its architecture was 
mirrored to create an autoencoder: a type of deep learning 
model capable of learning to efficiently represent input 
data at lower dimensions. The first part of the autoencoder, 
the encoder, maps the input down to a lower-dimensional 
vector. The second part of the autoencoder, the decoder, 
attempts to map this compressed representation back to the 
original inputs, reconstructing them with minimal error. 
This task is non-trivial because of the information 
bottleneck induced by the lower-dimensional intermediate 
representation between the encoder and the decoder. 
Throughout the training process, weights in the encoder 
and decoder are jointly adjusted such that minimal 
information loss occurs as the encoder maps its inputs to 
lower-dimension representations. Thus, the autoencoder 
learns information-efficient transformations that reduce 
spectrogram data to approximately a quarter of its original 
size with minimal information loss. 
 The CNN autoencoder was trained on batches of 
32 examples from the TUEG dataset, using with an Adam 
optimizer set to a learning rate of 1e-4 and the mean 
squared error (over all pixels of a sample’s spectrograms) 
as the loss function. Training was set to end after 100 
epochs or until the average mean squared error failed to 
decrease for 10 consecutive epochs. The learnable model 

parameters from the epoch with the lowest mean squared 
error loss were saved and used in the final encoder that 
would be incorporated with the rest of the model for the 
competition classification task. 
 Both when employing a pretrained encoder and 
when not, classification models were trained and evaluated 
using the same k-fold cross-validation pipeline to enable 
side-by-side comparison: the PhysioNet Challenge dataset 
was split into five equal subsets. For each split, the one-
fifth subset was held out as a test set and the other four-
fifths were used as the training set. The result were five 
scores for each model. The averages and standard 
deviations of these scores are reported in the results 
section. The specific metrics used were (1) the PhysioNet 
competition score, which was the maximum true positive 
rate at a threshold false positive rate of five percent, and 
(2) the area under the receiver operating characteristic 
curve (AUROC). 
 
3. Results 
 After applying inclusion criteria, 14,927 of the 
14,983 subjects (99.6 %) who received EEGs at Temple 
University hospitals between 2002 and 2017 were used for 
pretraining. This dataset represented a 24.6-fold increase 
in the number of independent training examples over the 
PhysioNet Challenge dataset, which included 607 cardiac 
arrest patients. Although our team did not submit an 
official-phase entry for the 2023 PhysioNet Challenge, and 
therefore has no scores to report for the competition’s 
hidden test dataset, we present cross-validation results for 
both our pre-trained and un-pretrained models on the 
training dataset. The pretrained model outperformed the 
un-pretrained model, with an average cross-validation 
competition score of 0.351 (standard deviation 0.058) and 
AUROC 0.77 (standard deviation 0.042) vs. un-pretrained 
competition score 0.211 (standard deviation 0.076) and 
AUROC 0.653 (standard deviation 0.033). 

 
4. Discussion and Conclusion 

In this study we present a novel modeling approach 
capable of learning from unlabeled data to improve 
performance on the task of predicting neurological 
recovery after cardiac arrest from EEG data. Our findings 
suggest that pre-training should be attempted whenever 
possible to help boost performance of classification tasks. 
By directly comparing a pretrained and un-pretrained 
version of the model, we show that there is benefit to 
pretraining for this task and model architecture. In theory, 
the benefit of pretraining on the unlabeled TUEG dataset 
is due to the fact that the CNN autoencoder was able to 
learn compressed representations of five-minute EEG 
segments that were generalizable across datasets. By 
leveraging these learned compressed representations in the 
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fine-tuning phase, the dimensionality of the classification 
task was effectively reduced for the pretrained model, and 
fewer examples were therefore required to achieve a 
certain level of performance. 

To our knowledge, this study is the first to apply 
the concept of EEG transfer learning to boost the 
performance of a model that could potentially aid in a 
specific clinically relevant task, such as prognostication of 
neurological recovery after cardiac arrest. Most other 
studies that have applied the concept of transfer learning to 
EEG modeling have done so in the context of improving 
engineering tasks related to Brain Computer Interfaces 
(BCI). Examples include (10), a study that applied the 
concept of transfer learning to better characterize mental 
workload from EEGs, and (11), a study that pretrained on 
unlabeled EEG data to improve performance on a series of 
standard BCI benchmarking tasks. Although these studies 
do not focus on clinically relevant tasks, their methods 
parallel our study and we arrive at similar results: for the 
majority of tasks, regardless of domain, pre-training on 
unlabeled data improves the performance of task-specific 
EEG models.  

Our study also has certain limitations. First, it 
should be noted that we used only EEG data, and not other 
demographic (e.g., gender, age, etc.) or clinical (e.g., 
targeted temperature management, time since cardiac 
arrest) data that had been provided. However, our best-
performing EEG-only models were outperformed by other 
teams’ un-pretrained models that used non-EEG data. 
Based on this comparison, it is likely that pretraining with 
more EEG data, although beneficial, is not as beneficial as 
training with more variables that are relevant to the 
prediction task. For this study, we chose to use only EEG 
data to keep the study focused on relative performance 
improvements from pretraining, rather than obtaining a 
maximum competition score. Second, our method of 
pretraining, which leveraged a CNN autoencoder, is only 
one relatively simple method among many other possible 
pretraining methods. Although implementation will be 
more difficult, the more sophisticated methods presented 
in (10) and (11) may potentially lead to further 
performance improvements. Lastly, the scope of this study 
did not include any analysis of how the CNN autoencoder 
was able to create useful features from EEG data. Do the 
compressed representations correspond to summary 
information of the alpha, beta, delta, and theta waves that 
are used in conventional EEG analysis, or something else? 
Analysis of these compressed representations with modern 
interpretability algorithms is another potentially interesting 
direction for future projects. 

In summary, leveraging unlabeled EEG data has 
been shown to improve task-specific modeling 
performance in a variety of non-clinical domains. Our 
study applies this technique to a specific clinical problem: 

predicting neurological outcomes in comatose patients 
after cardiac arrest. Many clinical problems lack 
specifically labeled datasets that are large enough to fully 
employ modern deep learning modeling techniques. 
Transfer learning methods that leverage large unlabeled 
datasets, such as the model we present in this study, may 
serve as a bridge that allows these more specific clinical 
problems to benefit from analysis by modern deep learning 
algorithms. 
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