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Virtual worlds are a topic of steadily growing relevance. Some of the providers report user numbers
that exceed the population of entire nations in the real world. Virtual worlds typically provide
a high degree of complexity, which in some areas approaches the real world’s richness of detail.
Without “living” in any given virtual world it is hard to get insights about that world and its
inhabitants. Knowledge about users’ roles within a virtual world can be of socio-economical and
scientific interest. This work describes an automatic means of inferring such roles based on textual
communication. We give an introduction into virtual worlds and formalize the task of virtual world
role detection as well as evaluating its performance against a manually annotated large-scale
corpus. We present and discuss various approaches towards virtual world role detection, showing
that performance close to that of human judges can be achieved. We close by demonstrating a
successful application of role detection in a free to play MMORPG.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Systems—
Human Factors; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—
Linguistic Processing; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Retrieval Models

General Terms: Experimentation, Human factors
Additional Key Words and Phrases: Accessibility, Online games, MMORPG, User modelling,
Virtual world

1. INTRODUCTION

Virtual worlds (VWSs) are an invention of the last 20 years. They had their be-
ginnings in the early 1990s and have since then been attracting a steadily growing
number of users. Virtual worlds are persistent environments within which users can
interact with each other. Most virtual worlds have a very high degree of complexity
which in certain aspects even approximates the real world’s richness of detail. Made
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possible by the spread of affordable broadband Internet connections, the number of
virtual world users has been steadily rising in recent years. MMOData, an on-line
project on virtual world statistics [MMO 2009], collected information about the
total number of active virtual world subscriptions. Even with occasional declines,
this currently means active communities of a size in the region of 17 million people.
This equals the populations of Chile or the Netherlands. Such vast user numbers
have been attracting significant interest in very different areas of the research com-
munity. Rizzo et al. [Rizzo et al. 2006] used virtual worlds for the treatment of Post
Traumatic Stress Disorder caused by extreme experiences such as wars, hostage sit-
uations or terrorist attacks. The authors’ explicit application was the reintegration
of Iraq war veterans into normal civilian life.

Another research idea which was introduced very early and since then has been
pursued with great effort is the educational use of virtual worlds. Although most
serious researchers agree that we are far from declaring real world schools and
universities obsolete, projects such as NICE [Johnson et al. 1998] show the idea’s
practical applicability.

A very interesting application of virtual worlds was discovered merely by chance
through a bug in the popular on-line role playing game World of Warcraft. On
September 13th, 2005, the game was expanded by an encounter in which one of the
players’ opponents could cause an infectious disease that would harm and eventu-
ally kill the avatars. This plague, known as “Corrupted Blood”, was supposed to be
limited to one particular zone of the virtual world. Players, however, managed to
exploit a glitch in the game to extract the disease from that zone and to spread it in
the virtual world’s capitals. Thousands of avatars died and playing became almost
impossible because of malicious disease spreaders who would try to infect as many
people as possible before eventually dying themselves. The whole incident could
only be ended by Blizzard, the game’s provider, resetting the entire virtual world.
Due to the strong parallels to real world diseases as for example AIDS, epidemiolo-
gists and behavioural scientists became aware of the situation and expressed their
strong interest in using virtual worlds as a means of simulating disease spread and
patient behaviour [Balicer 2007].

Leuski and Lavrenko in 2006 published their results on event detection in virtual
worlds [Leuski and Lavrenko 2006]. They followed the intuition that in any envi-
ronment, regardless if it is the real world or a virtual one, there is a dependency
between its inhabitants’ communication and their actions. Using a language mod-
elling approach, they predicted events in an on-line role playing game based on the
players’ chat messages.

The desire for role detection originates from the high degree of complexity com-
monly observed in virtual worlds. Many of the social and economical structures
found in these worlds are results of real people’s interactions. As a consequence,
they become as complex and hard to predict as their real world equivalents. We as
inhabitants of the real world have, through education and studies, assembled a great
amount of knowledge about the role distribution in our environment. We know who
is president and who is a famous actor. Especially in today’s globalised world, this
set of important individuals of public interest becomes more and more universal
for people from very different cultural and ethnic backgrounds. This knowledge,
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however, has to be acquired over a long period of being an inhabitant of the world.
For young children or members of a tribal society who spend their lives in remote
areas it might not at all be obvious, or even important, who is the current president
of the United States of America.

We are talking about the exact same situation when observing virtual worlds
from the outside. At a glance, we can not easily decide who is a prominent member
of society and who is not. Without spending time in the virtual world, talking to
people and having our own experiences, we will not be able to figure out the role
distribution in this alien society. Role detection tries to analyse an environment’s
communication, thus, figuring out who takes which role(s) in it without forcing
human observers to actually enter the world themselves.

1.1 Practical Application

Apart from the theoretical fascination of coming closer to understanding complex
environments in an automated way, there are several practical applications for role
detection. We will briefly discuss three very different approaches of using and ben-
efiting from virtual world role detection.

Virtual world Yellow Pages

Virtual worlds with their high degree of complexity, their changeability and expand-
ability, represent environments which demand a great amount of time spent within
them in order to fully understand all the underlying concepts, before allowing the
user to benefit from all the world’s possible features. Especially users who are new
to the virtual world or who went on hiatus are easily overwhelmed and intimidated
by the richness of features they offer. A role detection approach to ease the initial
barrier would follow the idea of the real world’s Yellow Pages. Such a directory of
the role distribution within the virtual world would help new inhabitants finding
their way around by easily being able to find out about prominent members of soci-
ety who are known to pursue certain professions or activities which the new user is
interested in. Due to the strong parallels between this scenario and several fields of
Information Retrieval such as expert finding or recommendation we will discuss it
in more detail in Section 7 where we describe an example setting of automatically
generated yellow pages for virtual worlds.

Bot detection
Most virtual worlds require their users to harvest resources, collect goods or simply
earn virtual currency. Since these tasks are often perceived as time-consuming or
tedious, players have been trying to employ automated agents, so-called bots, for
these jobs. The bot logs into the virtual world and takes control of the avatar to
perform a given task. However, most VW providers ban the usage of bots. They
see the virtual world’s economy, the non-botting players’ gaming experience and,
in the long run, their profit threatened. Over the past years, there has been an
arms race between bot developers and virtual world providers for better and better
stealth and bot detection techniques, which resulted in a succession of lawsuits with
significant values in litigation.

The currently strongest element of camouflage for the bots is the huge number of
users who are logged into the virtual world at any time. With several thousand users
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logged in even at night time, virtual world providers cannot realistically afford to
have their employees inspect a reasonable percentage of users for bot usage. Role
detection might bring a change by modelling “regular” user behaviour and then
spotting cases which differ dramatically from this standard. The number of such
reported suspected bot users could be made small enough to allow actual human
employees to only check on those few which the automatic classification was very
sure about. This might gain virtual world providers significant savings in their
operational costs.

An important fact to note about this particular application is the chat-based
nature of our approach. We purely consider communication-related features in
this work. Some years ago this might not have been possible as back then the
clear opinion was that MMOG bots do not chat. Nowadays, however, this notion
becomes more and more blurred by spamming bots and conversational agents em-
ployed to further hide the fact that the avatar is automated. With respect to these
developments, a bot detection scheme that, among other aspects, analyses player
communication would be timely and desirable.

Enhancing event detection

After having introduced two possible applications which are directed at providers
and users of virtual worlds, this third one aims to enhance virtual world research.
Earlier, we described Leuski and Lavrenko’s method [Leuski and Lavrenko 2006] of
using language modelling to predict virtual world events. Their approach treats all
chat messages equally in order to come to a judgement. An effective role detection
system would probably be able to further increase event detection performance
by determining individuals who fulfil certain roles of importance and then giving
more weight to these individuals’ messages. This would for example enable event
detection to treat a blacksmith’s utterances differently from those of a seasoned
warlord. Depending on the context, one or the other might be the more valuable
source of information.

1.2 MMORPGs

The recently popular and highly frequented virtual worlds can be grouped into
several categories, the most important of which we will introduce briefly:
Games. By far the most popular commercial virtual world application are on-line
games. Players either band together to fight strong monsters or opposing groups
of players.
Social VW. The main feature of this kind of virtual world is social interaction.
Probably the most famous specimen of this category is Second Life [Sec 2010], a
VW that is very closely aligned to the real world. While virtual worlds belonging
to this category will seldom project their users into outer space or the middle ages,
they rather offer a communication platform for people with similar interests.
(Combat) Simulation. Virtual worlds with emphasis on the simulation aspect
let users take the role of air plane pilots, air control tower staff, army generals or
medieval lords. Connected through the Internet the users emulate a real world
topic to a very high degree of detail. Often even the protocol of communication is
similar or identical to the one used by their real world examples.

As Table I shows, the virtual world market is clearly dominated by games. Within
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Table I.  Virtual world market shares by VW type

l VW Type [ Subscription market share ]
(Combat) Simulation 0.2%
Social VW 1.9%
Games 97.9%

the class of on-line games there are several different genres. With a share of 94%,
Massively Multiplayer Online Roleplaying Games (MMORPGs) are more and more
seen as a synonym for the whole on-line gaming sector. This project will narrow
its focus further down on MMORPGs, to be able to treat their intricacies appro-
priately. Specializing on MMORPGs will offer us a more homogeneous field of
study while their great market share means that our research results will still re-
main representative. The main idea of MMORPGs is to allow the user to create
an avatar with a basic set of features. They often also offer a range of different
virtual races and professions to choose from. The player typically enters the game
with his avatar having low attribute values (e.g., strength or intelligence) and with
hardly any equipment. At this stage, all but the weakest opponents will impose
great dangers to him. Therefore, one of the central ideas of MMORPGs is to
advance one’s avatar by defeating monsters, thus, gaining experience points and
better equipment. This kind of game is called player versus environment (PVE)
since the player’s avatar only fights system-controlled opponents. The alternative
principle is player versus player combat (PVP) where rivalling players fight against
each other. The final standard feature all MMORPGs share is an in-game chat
system which allows players to communicate in the virtual world. We will base our
role detection on the messages sent through this chat system.

The contributions of this work are fourfold: (1) We formalize the novel task of
virtual world role detection and identify the essential steps to achieve it. (2) We
evaluate a wide range of state of the art means of information retrieval in terms
of their applicability for this setting. (3) A role detection approach is introduced
that approximates human performance. (4) We demonstrate the applicability of
our method by providing an automatically generated directory of proficient players
for an MMORPG. The remainder of this article is structured as follows. In Section
2, we formalize the task of role detection in Virtual Worlds. Section 3 gives an
overview of related work followed by a definition of the evaluation plan along which
detection performance is measured in Section 4. In Section 5, we introduce our role
detection approaches which are evaluated in Section 6. In Section 7, we describe a
real world application of our role detection method as well as the user community’s
feedback on it. Finally, Section 8 discusses the results and gives future perspectives
on role detection.

2. STATE OF THE ART & RELATED WORK

Currently, virtual worlds (VWs), regardless whether applied for games or other
purposes, do not conduct automatic analyses of user behaviour. There are several
examples of qualitative academic studies of user behaviour in virtual worlds (e.g.,
[Ducheneaut et al. 2006; Williams 2006; Chen and Duh 2007]) but none of them
attempted automatic categorization of users according to their activities. Although
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more and more aspects of social networks are being integrated, hardly any of the
well-studied data mining and information retrieval techniques have been applied by
platform providers. The closest match to the applications and methods discussed in
this work is the grouping aid functionality introduced by several Massively Multi-
player Online Games (MMOGs) such as for example World of Warcraft. Such tools
allow players to declare their desired operative role (e.g., healer) and find prospec-
tive group mates with complementary roles. However, there is no automatic role
detection and the roles to choose from are functional rather than behavioural. The
activity-based roles employed in this work are defined in a much more fine-grained
way and are expected to hold greater benefit for VW users if supported appropri-
ately.

Although there has not been any prior research on virtual world role detection
known to us, advances in related disciplines are highly relevant to the topic of this
work and deserve discussion. Previous work on automatic bot detection in virtual
worlds has mainly focused on server-side features as for example avatar trajecto-
ries [Chen et al. 2008] or traffic analysis [Chen et al. 2006]. Thawonmas et al.
analysed avatar behaviour to identify bots [Thawonmas et al. 2008]. While the
intuition behind their approach and ours is similar, the underlying notions of be-
haviour are different. The authors concentrated exclusively on the usage of VW
spells and attacks whereas our classification scheme will try to distinguish more
abstract concepts such as activities and roles based on user communication.
Interestingly, we can note an interesting change in the research community’s atti-
tude towards this task. Not long ago, in 1994, Mauldin concluded his survey of
state of the art conversational agents [Mauldin 1994] by stating that while being
an interesting problem, there was no practical use for machines passing the Turing
Test. This view has changed radically in recent years. Nowadays, we face MMOG
bots aspiring to imitate human chat behaviour in order to conceal their artificial
nature, and machines, such as IBM’s Watson, winning game shows by answering
natural language questions. In the field of crowdsourcing, direct financial gains can
be made from disguising machines as workers and letting them perform paid tasks.

Another related discipline from the field of information retrieval is expert finding
[Balog et al. 2006]. Identifying proficient individuals within the boundaries of a
given organization or network can be beneficial for our aim of gaining knowledge
about the social structures of a virtual world. Especially with respect to the “Vir-
tual World Yellow Pages” application discussed previously, the parallels become
obvious. With the growing popularity of social networks such as Facebook or its
local equivalents, a significant amount of recent research has been dedicated to
finding experts in such networks [Maybury et al. 2001; Zhang et al. 2010; McDon-
ald 2003]. Considering VW features such as friend lists or scheduled group events,
VWs can be viewed as a form of social network augmented by a virtual environ-
ment. While expert finding approaches largely consider corpora of (professional)
documents, our approach will exploit communication data to find knowledgeable
people. Assuming a role affiliation to be the equivalent of expertise in that role’s
core capabilities, we employ similar techniques tailored towards the domain-specific
information available in virtual worlds (e.g., spatial and directional knowledge).
Leuski and Lavrenko’s work on virtual world event detection [Leuski and Lavrenko
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2006] is the first and currently only application of means of IR for a virtual world.
Events were defined as groups of players defeating monsters in the game. Based on
the success of the 2006 project, which yielded an error rate of only 10% at predict-
ing raids at a given time and location, this work will take an additional step and
also predict the precise kind of activity performed as well as the participants’ roles.

3. ROLE DETECTION

We will begin the formal description of virtual world (VW) role detection by in-
troducing the relevant activities and roles that are commonly observed in Mas-
sively Multiplayer Online Roleplaying Games (MMORPGs). The research pre-
sented in this work is based on the Blade Mistress Corpus [Eickhoff 2009], a man-
ually annotated collection of 11,227 MMORPG chat messages originating from a
non-commercial MMORPG. The messages are organized in 849 conversations, each
annotated with activity and role labels.

3.1 Activities

The Blade Mistress corpus distinguishes between 6 different types of functional
activities in which avatars can be involved. Table II shows the distribution of
activity types in the corpus.

Adventuring. Adventuring conversations are related to one or more players’ ef-
forts to defeat a VW monster and in turn gain its treasure. Typical adventuring
roles are leaders who coordinate the action and adventurers who carry out the plan.
Trading. Trading conversations are concerned with the buying, selling or exchang-
ing of virtual goods. They commonly involve the roles of buyers and sellers.
Crafting. Many MMORPGs offer the possibility to create virtual goods (e.g., a
sword). Crafting conversations address the made-to-measure creation of goods. The
common roles observed in crafting are craftsmen and customers. The difference to
trading conversations lies in the product customisation aspect which mere trading
lacks.

Social Structures. A common feature of virtual worlds is the possibility to form
social networks and user groups. Conversations about this activity are related to the
creation or administration of such structures. The related roles are organizers who
guide and manage a social structure and members who are part of that structure.
Knowledge Transfer. Due to most VW’s high degree of complexity there is a
constant need for exchange about VW mechanisms. Knowledge transfers commonly
identify teachers and learners.

Story telling. The activities above are to be used when annotating conversations
by users who are actually involved in an action. In order to differentiate this from
just telling someone about a recent VW event, “story telling” was introduced. It
involves narrators and listeners.

Other. All previously described activities are closely VW-related. There is, how-
ever, a substantial amount of non-VW chatter present in the messages. In order
to represent everything which could not be clearly associated to any of the above
activities, we introduced the “other” category.
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Table II.  Global activity distribution Table III.  Global role distribution

] Activity | Share | [ Role [ Share |
Knowledge Transfer | 23.91% Adventurer | 15.71%
Adventuring 22.73% Learner 12.76%
Other 22.5% Teacher 11.15%
Trading 14.49% Seller 7.56%
Social Structures 6.83% Leader 7.02%
Story Telling 6.12% Buyer 6.93%
Crafting 4.12% Member 4.03%

Listener 3.35%
Organizer 2.8%

Narrator 2.77%
Craftsman | 2.33%
Customer 1.79%

[ Other [ 21.8% |

3.2 Roles

The previous activity descriptions mentioned two typical roles for each of the ac-
tivities. These are the most commonly observed roles for those activities. We will
further refer to them as essential roles since the nature of the activity is defined by
their presence. Most roles can be taken by multiple individuals in a conversation.
It is for example not unusual to have several sellers barter the price of a certain
(shared) good with one or more buyers. The opposite case in which an essential
role is not incorporated by at least one avatar is rather unlikely.

Analogously to the “other” activity there is an “other” role, as well, to account
for unrelated chatter within a conversation. Table IIT shows the distribution of
roles in the Blade Mistress corpus.

3.3 Role Detection as a task

Since role detection in a complex environment is not a trivial task, we will split
it up into three sub tasks which separately are easier to accomplish. To illustrate
the scope and complexity of these sub tasks, we will inspect a small portion of
the Blade Mistress Corpus for each of the steps. This corpus will also be used for
training and evaluation of our classifiers. Each entry contains a time stamp, the
sender, the message and the sender’s coordinates in the VW.

01:07:49 2,1 oldy_chick says is this for keeps?

01:07:54 2,1 Joe2 says yeah free

01:08:05 2,1 oldy_chick says thank u very much

01:08:10 2,1 Joe2 says welp off to do some Ivling

01:08:22 3,1 oldy_chick says ill help

01:08:26 17,8 Belanya says why you following me?

01:08:34 5,0 Joe2 says no need i dont kill monsters

01:08:37 18,10 Belanya tells everyone under skills unless you havent purchase it yet
01:08:40 5,0 Joe2 says just hit with fists

01:08:42 5,0 oldy_chick says ?
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01:08:54 5,0 Joe2 says they dont die that way but i still get xp
01:09:02 5,0 oldy_chick says oh

01:09:04 16,8 Belanya says owy!

01:09:06 5,0 oldy_chick says cool

01:13:57 14,29 Belanya tells everyone 1100 exp to Ivl 22 :D

01:14:16 72,8 Presideon tells everyone how do you find out your level?
01:14:21 14,30 Belanya tells everyone your dodge Ivl

01:14:24 34,11 Joe? tells everyone dodge

01:14:34 72,4 Presideon tells everyone where's that

01:14:34 34,11 Lorian says 102 till vl 18

01:14:37 34,11 oldy_chick says 3

01:14:51 34,11 Joe2 says 600 till 17

01:15:14 34,11 Lorian says were's are Ivl 27 you wont get xp

The 8 minutes of communication shown above contain various conversations be-
tween players. It contains examples of knowledge transfer, the end phase of a
trading activity and some chatter. The part which we will mainly focus on in this
example is the knowledge transfer between oldy_chick and Joe2 from 01:08:10 until
01:09:06.

The first observation to be made is that the conversation in which Joe2 explains
a certain exploit of the game mechanics to oldy_chick is preceded and trailed by
unrelated messages from other players as well as the two involved ones. To enhance
readability, the related messages in this knowledge transfer were highlighted in bold
type face. Apart from unrelated messages surrounding the conversation, we also
have to detect unrelated messages being sent within it. An example would be the
clearly irrelevant utterances of Belanya, who is not even at the same location as
the other two.

Message grouping

Precisely as in the real world, virtual world roles depend strongly on their context.
A person might take several very different roles depending on what he or she does
and who else is present. A successful manager who is in charge during most of the
day might for example fulfil an entirely different role in the Judo club which he
just joined two weeks ago and where he still has to learn a lot about the group’s
structure and the sport itself. In order to take this fact into account, roles are not
assigned globally, but within the context of each conversation. Global trends can
be inferred from the roles which a person regularly takes.

The first step towards role detection is therefore grouping those messages from
the chat log that belong to a single coherent conversation. With regard to our
example conversation, grouping would fulfil the purpose of clustering the bold mes-
sages together, separating them from the others. Although humans can handle this
task of deciding which information belongs to which topic without difficulties, it is
probably the hardest of the three sub tasks in terms of automation.
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Activity labelling

Similar to their real world counterparts, VW roles tend to depend on the type
of activity that is carried out. Unless the roles are defined very abstractly (e.g.,
just distinguishing dominant from subordinate behaviour), information about the
conversation’s topic is essential for role detection. Since we defined groups as sets
of messages belonging to a single activity, this means assigning a class label for each
system-generated message group.

We again inspect our sample conversation which has now been grouped ideally,
all unrelated messages before, between, and after the important ones have been
stripped away. The aim of this sub task is now to find a single class label for the
kind of activity taking place. In our example we would like the system to classify
this group of messages as a knowledge transfer.

01:08:10 2,1 Joe2 says welp off to do some Ivling

01:08:22 3,1 oldy_chick says ill help

01:08:34 5,0 Joe2 says no need i dont kill monsters

01:08:40 5,0 Joe2 says just hit with fists

01:08:42 5,0 oldy_chick says ?

01:08:54 5,0 Joe2 says they dont die that way but i still get xp
01:09:02 5,0 oldy_chick says oh

01:09:06 5,0 oldy_chick says cool

Role labelling
With the messages grouped into conversations and their activities annotated, the
third sub task is to finally assign an activity-dependent role to every participating
person in the conversation.

In the knowledge transfer example, we would like Joe2 to be classified as a teacher
and oldy_chick, who gets information about the exploit, as a learner.

4. EVALUATION PLAN

This section will briefly introduce the evaluation metrics which we will use to de-
termine the quality of our role detection system. The evaluation will be done
separately for each sub task. The Blade Mistress Corpus consists of virtual world
(VW) conversations grouped and annotated with activity and role labels by human
judges to form a reliable evaluation corpus. It was split into distinct training (90%)
and test sets (10%). Model training and parameter tuning will be carried out on
the training set. The test set will be exclusively used to report the final perfor-
mance. In the following, we will call the corpus’ judgements reference groups/labels
as opposed to automatically created hypothesis groups/labels.

4.1 Message grouping

The evaluation of the first task will be done in terms of misses and false alarms
according to Topic Detection and Tracking (TDT) Phase 2 [Doddington 1998]. We
decided to follow this well-known evaluation scheme as the message grouping task
shows the same work flow and identifies the same quality criteria as the established
topic detection/tracking task from the literature. The miss probability, in this
context, expresses the likelihood of a message related to a certain virtual world
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proceeding not being put into the relevant group. The false alarm probability, on
the other hand, stands for the likelihood of an unrelated message being put into the
group. Reducing misses and false alarms will create better groupings since related
messages from the VW are grouped together (low misses) and unrelated utterances
should not end up in the same group (low false alarms). The first step is to find
the most similar hypothesis group H; for each reference group R;. This mapping
H(R;) = argmin]_,{D(R;, H;)} will be done by determining the distance between
R; and all system generated groups. The group with the smallest distance will be
selected, whereas distance is defined as:

D(RzaHj) = PMiss(RiaHj) *C+ PFalseAlarm(Rinj) * (]- - C)

with
Nuriss (Ri Hj
PMiss(RiaHj) = W
N raiseAtarm (i, Hj )
PFalseAlarm(Ri7 H]) = w

c is the relative cost of a miss in relation to a false alarm.

Naiss(Ri, Hj) is the number of messages in R; which are not in H;.
Nraiseatarm (Ri, Hj) is the number of messages in H; which are not in R;.
|G;| is the number of messages in group G;.

M is the set of all messages m;y..m | in the corpus.

Once the mapping between hypothesis groups and reference groups is defined,
we can compute the miss and false alarm probabilities over the whole corpus as:

Phriss = ZP(l) PN]iss(RiaH(Ri))

PFalseAlarm = Z P(Z) PFalseAlarm (R’L7 H(Rz))

Where P(i) = ‘ﬁ/fil‘ is the group size divided by the collection size.

4.2 Activity detection

The activity detection task will be evaluated in terms of classification accuracy over
all reference groups.

IR

Accuracy = ﬁ > 0(R;, H{R;})
i=1
with

1 if a(R) = a(H;)
0 otherwise

J(Riij) = {

Where a(R;) is the activity label assigned to message group R;.

The intuition behind this approach is the simple notion of visiting all reference
clusters and checking whether they carry the same activity label as the most similar
system-generated cluster. For each match, we add 1 to our total sum. In the end,
we normalize by the size of the reference set, ending up with the share of clusters
which were labelled correctly.
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4.3 Role detection

In analogy to activity detection, the role detection task will be evaluated through
classification accuracy over all reference groups R; and all players Pg, ; within each

group.

. |PR;!
P 21 A(PR, j, Pr(r).j)
iz

IR
Accuracy = ﬁ >
i=1

with
1 if p(P) = p(Pn)

0 otherwise

A(P,”Ph):{

Where p(P,) = is the role label assigned to player P,.

This evaluation scheme is based on the same notion of iterating over all reference

groups that we used for activity detection. Instead of inspecting activity labels, at
this point, we compare the role labels per person in each group. In the end, we
obtain the share of role labels which has been correctly assigned.
One of the key limitations of the proposed evaluation scheme is the central role
of the mapping H(R;) between hypothesis and reference clusters. Low overlap
between clusters will propagate to activity and role labelling performance. As
a consequence, the resulting performance should be interpreted as conservative
estimates of the actual performance. To limit this effect, we will use gold standard
groups for activity and role detection.

5. ROLE DETECTION APPROACHES

After having introduced the relevant sub tasks of virtual world role detection
and the means of evaluating detection performance, this section will describe our
method in detail.

5.1 Message grouping

Our message grouping strategy is a rule-based system that takes into account the
senders’ positions, their means of communication, as well as the time elapsed be-
tween messages m. We considered a combination of two types of rules: (1) Con-
nectivity rules determine whether several users are able to communicate. Some
of the VW’s chat channels are position-dependent (e.g., say or shout), others are
directly sent to one or more players (e.g., whisper or guild), and some are indefinite
broadcasts to the entire VW. Thus, we consider only messages from authors who
were able to read a given message group’s previous stream of communication.

(2) Freshness rules are concerned with the delay between messages. If two messages
are issued with a significant communication gap between them, it is unlikely that
they belong to the same conversation. Once connectivity and freshness are ensured,
we expand the message group by m.
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5.2 Activity/ Role labelling

In this section, we will introduce different n-gram language models (LM) and vector
space models (VSM) to represent the likelihood of a group of messages belonging
to a given activity or role.

Uni-gram Language Models
Message groups are split into white space-separated lists of words, punctuation is
removed and the words are mapped to lower case. The (smoothed) probability of
observing each single word w given the model’s activity/ role is multiplied into the
final LM score.

P(G[LM4) * p(A) = p(A) T] I LMa(w)

meG weEm
It consists of the prior class probability

— #Groupslabeled A
p(A) - #GroupseC

and

LM (w) = AESE + (1 - \) %

a uni-gram-based language model. This model interpolates the relative frequency
of w in the training corpus for activity A and its relative frequency over all models
according to the Jelinek-Mercer smoothing principle [Jelinek and Mercer 1980].

Character n-gram LM
Message groups are split into white space-separated lists of words, punctuation is
removed and the words are mapped to lower case. The resulting words are split
into word-internal character sequences of length n. Those are then used as terms
to compute the LM score as before.

The character n-gram representation of “Did you find the mystery sword?” for
n=21is:

v = {di, id, yo, ou, fi, in, nd, th, he, my,
ys, st, te, er, ry, sw, wo, or, rd}

As an alternative to using language models, we propose applying various vector
space models. Each of them represents message groups as vectors in high dimen-
sional spaces.

Binary Vector Space Model

This simplest version of a vector space model as a message group representation
contains one vector component for each unique term in the group of messages. We
chose this model to evaluate the impact of general term presence or absence on
activity /role detection performance.

Frequency-based Vector Space Models

This kind of VSM was used to measure the effect of word frequency information
on detection quality. Each vector component contains the absolute frequency of a
unique word.
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Character n-gram Vector Space Models

In difference to the previous two modelling approaches that used whole words for
the vectors’ components, this model employs word-internal character n-grams and
their frequencies to represent message groups. While the first two models were
non-parametric, the choice of n-gram length n will be an important step towards
obtaining good results. This model is interesting for its tendency to reveal charac-
teristic patterns on the sub-word level.

Non-verbal features

The models introduced above exclusively used words or character n-grams as fea-
tures. In order to not only consider what people say but also how (where, when,
etc.) they say it, the previous models can be expanded by a range of non-verbal
features generated from the message groups. These features are:

—Mean message size in words/ size variance

—Total number of messages/ words

—DMost frequently used communication channel’s ID
—Mean x and y coordinates of senders

—Mean/ variance time interval between messages
—Total number of involved players

—Travelled geographical distance during conversation

These features bear information about shallow message properties, means of com-
munication and movement patterns. Each of which might contain information
about the role the sender takes. They are injected as additional dimensions in the
vector space. In order to do this, we have to take into account the very different
scales of the values. Previously, we only had to process term frequencies which are
on the same scale. Now, however, we introduce new dimensions that might exceed
those counts by far and that would therefore give a too high overall importance to
the feature. We prevent this by normalizing the features’ scales and mapping them
onto word frequency scale in the following way:

xr;—min;

Ci = nazi—min; AL fregAi

Where

¢; is the rescaled value of the i-th feature,

x; is the feature’s original value,

min; is the smallest observed value for feature 7,
mazx; is the largest observed value for feature ¢,
MAZ freq is the largest observed term frequency.

The minima and maxima needed for this mapping were calculated over the whole
corpus of messages. To tune the features’ individual contributions to the overall
classification, the model is finally expanded by a vector A of weights A; for each
feature component c;.
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VSM strategies

The main task for vector space classification is finding the decision boundaries in the
high dimensional space. The Centroid method approaches this task by introducing
mean vectors for each class. They represent the center of mass of their class. The
intuition behind this is checking how similar a given conversation is to the “average
knowledge transfer” , the “average monster hunt”, etc. Instead of considering one
centroid per activity or role, we can employ a k-nearest-neighbour (KNN) approach
that keeps all known training instances and assigns the locally dominant label to
each new message group.

VSM similarity measures

Both, KNN and Centroid methods employ notions of distance between entities in
the vector space. We evaluated the following similarity measures to determine
nearest neighbours/ closest centroids. They were chosen to inspect the suitability
of various approaches of distance measurement for the domain of role detection.

—Inner Product
—FEuclidean Distance
—Dice Coefficient
—Cosine Coefficient
—Jaccard Coefficient
—TF/IDF

While most of the above are widely known distance metrics, the TF/IDF formula
is a more sophisticated measure from the field of information retrieval that deserves
further elaboration. The central idea of this approach is to compare the relative
frequency of a term w between two message groups. The main element of the
equation is the term frequency t¢f,, 5 which represents the frequency of word w
in message group g. Since larger message groups contain more words, the group
size |G| multiplied by a squashing factor K is used for normalization. Finally,
words which are generally frequent tend to contain little topical meaning (e.g.,
“the” or “and”) whereas very infrequent words can contain a lot of meaning (e.g.,
“hibernation”). To account for this, the notion of inverse document frequency,
dfw, was introduced. This represents the number of documents containing term w.
TF/IDF gives only very little weight to frequent words (i.e., words with df,, close
to the collection size |C|).

P tfw, 7 tfw @ [Cl+1 \2
sim(7, i) = %: o w +KHR] T =+ K] (logg w+0.5)

6. PERFORMANCE EVALUATION

In this section, we will evaluate different means of role detection along the formulae
described in Section 4.

In order to obtain unbiased evaluation results, the corpus was split into distinct
training and test sets. Training and evaluation were done exclusively on the training
set using stratified 10-fold cross validation. When the preferred model for a sub task
had been chosen and its parameters had been tuned, this model was run once on
the test set. This final performance is reported without further tuning or training.
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Table IV. Grouping performance on the training set

l 0t [ Phriss [ Pralse Alarm [ Mean l
10 93.32% 2.69% 48.01%
20 85.04% 3.42% 44.32%
40 61.17% 4.24% 32.71%
60 40.77% 4.52% 22.65%
80 32.69% 7.98% 20.34%
100 28.31% 10.44% 19.38%
120 26.01% 12.81% 19.41%
140 | 21.78% 14.17% 17.98%
160 21.51% 16.4% 18.96%
180 21.66% 17.5% 19.58%

A part of the test set was redundantly annotated! in order to measure human
agreement for the three tasks.

6.1 Message Grouping

As outlined in Section 4, the grouping task is evaluated in terms of misses and false
alarms. For a practical application of message grouping techniques, one will have
to decide on a weighting scheme that reflects the relative cost of a miss with respect
to a false alarm. For our evaluation, we chose uniform weights, making misses and
false alarms equally important.

The main variable in message grouping is the time ¢§; after which we close a
potential conversation cluster. Lower values of d; mean less false alarms at the cost
of more misses.

Table IV shows the influence of §; on the grouping performance on the training
set. Figure 1 depicts the error function for different settings of d;. In order to get
a better understanding of these results, we computed Kappa agreement scores for
the corpus’ redundantly annotated share of the groupings. Human annotators were
able to achieve K = 0.82 whereas our system reached K = 0.51.

Message grouping appears to be a domain in which human annotators outperform
our grouping system by a significant percentage. The lowest overall combination of
misses and false alarms could be achieved by a §; of 140 seconds. This setting was
used on the test set and achieved a Pigss of 35.91% and a Praiseaiarm of 11.04%
for unseen data.

6.2 Activity and Role Detection

Because of the high number of possible combinations of models and similarity met-
rics proposed in Section 5, we will evaluate them separately for each model. The
best model will be selected and its parameters be tuned before reporting its per-
formance on the unseen test data.

SVM baseline
In order to compare our results to state of the art text classification techniques, we

1For 20% of the test set there are second judgements. An additional third judgement was collected
for 6% of the messages.
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Fig. 1. Grouping performance on the training set

will include a support vector machine (SVM) classifier using uni-gram frequencies
and our set of non-verbal features for activity/role classification. SVMs have been
trained and tested using the LibSVM library [Chang and Lin 2001] (C-SVM, radial
basis kernel, cost = 1, e = 0.001, v = 0.01). We used tf/idf-weighted terms and the
rescaled non-verbal features described in 5.2 for our SVMs. The above parameter
settings are the best-performing settings determined through a series of iterative
experiments.

Activity detection
Table V shows a comparison of the various model-measure combinations and our
SVM baseline. The general tendency we could observe was a superior performance
of the Centroid method for this application. The classification results of vector
space models expanded by 12 non-verbal features was tested for term frequency-
based VSMs. The high number of weights creates a vast space of potential settings.
For reasons of time, we could not exhaustively inspect these settings. Although
prior testing on smaller hand-labelled data sets suggested a potential benefit from
these non-verbal features, we unfortunately could not achieve gains in detection
performance on the final corpus. Further fine-tuning and experimentation with the
feature weights might, however, produce better results.

For the final run on the unseen test set we chose a 4th-order character n-gram

ACM Journal Name, Vol. V, No. N, Month 20YY.



18 . Carsten Eickhoff et al.

Table V. Activity detection results on training data

l Classifier [ Accuracy ]

Random Baseline 23.91%

Character 3-gram LM 29.09%

Euclidean/Char 4-gram VSM/Centroid | 38.34%
TF /IDF/Binary VSM/KNN 21.95%
Euclidean/Frequency VSM/KNN 20.91%
Euclidean/Binary VSM/Centroid 28.7%
Euclidean/Character 4-gram/KNN 23.12%

SVM (uni-gram freq + shallow features) 34.03%

Table VI. Role detection results on training data

[ Classifier [ Accuracy ]
Random Baseline 21.28%
Euclidean/Binary VSM/Centroid 39.23%
Cosine/Character 3-gram VSM/KNN 35.48%
Uni-gram LM 38.10%
Euclidean/Character 4-gram VSM/Centroid 36.29%
Jaccard/Frequency VSM/KNN 38.79%
Jaccard/Binary VSM/KNN 39.84%
SVM (uni-gram freq + shallow features) 38.12%

vector space model using Euclidean Distance as similarity function with the Cen-
troid method. This combination achieved a very reliable overall performance on the
training data. With this set-up we could obtain an accuracy of 36.47% on unseen
test data. Human annotators reached a score of 47.29% (K = 0.55).

Role detection

Evaluation procedure and set-up for this task are very similar to the previous
ones. We determined the best model and its parameter settings on the training
data and finally evaluated the system with a single run on the test set. Table
VI shows the best-performing model-measure combinations for role classification.
Similar though the tasks may be, we could clearly recognize that the most successful
activity detection approaches are by no means bound to be the best ones for role
detection. The Centroid method for example, that performed very well on activity
detection, does not yield convincing results for role detection. Another difference to
activity classification results is the performance of the language modelling approach.
Although they are amongst the best models, the former tendency of character n-
gram language models outperforming uni-gram language models was inverted. For
role classification, the accuracy rises with the model order, thus approaching uni-
gram word model accuracy.

For the final classifier we chose a binary vector space model using KNN and the
Jaccard Coefficient as this has proven to be a reliable combination. Run on the test
set’s unseen data, the system could achieve a final classification accuracy of 36.08%
in comparison to the human annotators’ 44.96% (K = 0.49).
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Table VII. Detection results on unseen test data

[ Method [ Activity labels [ Role Labels ]
SVM Baseline 31.51% 33.04%
VSM approach 36.47% 36.08%

Human performance 47.29% 44.96%

Performance on unseen test collection

Table VII shows our vector space approach’s performance on the unseen test collec-
tion in comparison to the SVM baseline for activity and role labelling. While not
being able to match human accuracy, our vector space methods outperformed the
baseline for both labelling tasks at o < 0.05 significance level (Determined using
Wilcoxon Signed Rank Test).

7. APPLICATION EXAMPLE

In Section 1.1, we motivated several scenarios for which virtual world (VW) role
detection can be beneficial. After having shown that automatic role detection is
achievable with results close to human performance, we will now revisit the vir-
tual world yellow pages scenario in more detail. According to a survey on players’
reasons for quitting their VW subscriptions [Yee 2003], one of the most frequently
mentioned causes was the player’s circle of friends stopping to play the game. Mas-
sively Multiplayer Online Roleplaying Games (MMORPGs) focus heavily on the
grouping aspect, offering manifold challenges for the players that can not be over-
come by a single individual. Players quitting the game, therefore, often cause series
of subscription cancellations as the users lose their accustomed groups. It appears
crucial for preserving long-term player satisfaction to provide a lively social envi-
ronment in the VW. At the same time, meeting new people in virtual worlds seems
to be a hard task. World of Warcraft, the market leader in MMORPGs, recently in-
troduced various means of easing grouping and companion finding in order to limit
user frustration and the resulting cancellation chains. Their system currently allows
to search for players that want to fight the same monsters. This intention has to be
manually indicated when entering the grouping queue. This rather straightforward
approach is not suitable for providing recommendations of complex concepts such
as the roles described in this work. We are confident that offering more fine-grained
avatar recommendations based on VW role detection will be widely appreciated by
the user community.

7.1 Set-up

We conducted our applicability study at the example of the free MMORPG The
Mana World [tmw 2010]. The game offers all common MMORPG features with
the only exception of the crafting system being limited to just one trade (alchemy)
at that point of development. We decided for this particular VW as it is one of the
few sophisticated games with Open Source licenses available for both, the client and
server code. This enabled us to offer our own game server and conveniently record
and evaluate player communication while at the same point avoiding privacy issues
by being able to inform the players of our research interest before they started
playing in the VW. The server was available for 6 weeks during which we collected
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Fig. 2. Open MMORPG: The Mana World

data from 284 distinct players.

7.2 Features offered

For this first applicability study we offered only a basic range of yellow page fea-
tures to the inhabitants of our virtual world. The services described below were
offered on the web site on which we also advertised our VW server. The two types
of services available were (1) a browsable directory of players and (2) a friend rec-
ommendation system.

Player directory

To build up a browsable directory of players, we represent each user as a vector
with one dimension per role type?. The values in these dimensions are the shares
of their overall play time that the users spend in the relevant role. Players for
whom the value in a certain dimension lies significantly above the global average
are listed for that role(s). The web interface finally allows players to browse the
list of players by their preferred roles in the game in order to ease grouping or to
find the knowledgeable person on a certain topic.

Friend recommendation

To show the possible impact of role detection on friend recommendation, we employ
two different measures, mutual similarity and complementarity of activity and role
preferences. A high score in one of the measures will lead to the relevant avatar
being recommended as a friend. Players with similar interests (expressed through
a similar role distribution) are valuable sources for experience exchange or joint
activities. To measure similarity, we make use of the role distribution vectors

2 Activities and roles were determined according to the best-performing methods evaluated in
Section 6. We exclude the “other” role at this stage as it does not have a well-defined functional
use.
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from the player directory. The actual similarity score is determined by computing
Euclidean Distance between the vectors. In Section 3.2, we described roles as
complementary pairs belonging to a common activity. We will exploit this design
by measuring the degree of complementarity between two players’ interests. A
player with a high complementarity score often takes the roles that are needed for
interaction. Following complementarity, an impassioned leader could find people
who frequently take the role of adventurers. Complementarity scores are, again,
obtained by measuring Euclidean Distance between role distribution vectors. This
time, however, the player’s vector is transformed in such a way that the positions
of the two complementary roles are swapped before comparing it to a prospective
friend’s vector. This for example results in the player’s preference for crafting being
compared to each potential friend’s previous preference for having things crafted.
The friend recommendation at the current stage is exclusively based on the findings
of our role detection. For further use in large-scale environments, state of the art
predictors of friend relations such as the number of mutual friends or the guild
affiliation should be incorporated into the model.

7.3  Conclusion & Community response

In order to get an impression of how useful our yellow pages system is, we asked
each user to give us a brief feedback on how much she or he liked the recommen-
dation and player directory features on a scale from 1 “Did not like it at all” to
5 “Liked it a lot”. They additionally had the possibility to provide more detailed
textual comments. During the time of the experiment we collected 179 feedback
responses on our system. The mean popularity score of the player directory was a
very high p = 3.95 with a standard deviation ¢ = 0.28. The friend recommenda-
tion feature was rated p = 3.1 and o = 0.505. The detailed responses were largely
positive. Especially the player directory was mentioned frequently. Several players
explicitly expressed their desire for similar functionalities being implemented into
their favourite commercial on-line games. The friend recommendation was not as
popular and should, for real use, be expanded by features like the number of mutual
friends. Players were hesitant to approach (possibly interesting) recommendations
whom they did not know at all. With our applicability study, we showcased an
example of how to exploit the findings of this work in a real world environment.
The generic fashion in which our models are phrased, making no static assump-
tions about the concrete type of VW or its purpose, allow for a flexible use of our
method. In this section, we showed how the insights gained from our analysis of
one MMORPG (Blade Mistress) could be successfully ported to another platform
(The Mana World) and was able to provide an enhanced game experience there.
Due to the huge quantities of archived textual player communication, the creation
of role detection functionality following the scheme outlined in this work, can be
considered a feasible task for providers of commercial VWs. Potential benefits in-
clude: (1) Greater enjoyment of players due to sophisticated VW recommendation
functions as described in this section. (2) Better understanding of player behaviour
that may be exploited when designing new content following the needs and pref-
erences of the user base. (3) The possibility of targeted advertisement services
affiliated to many current VWs. Knowledge of a player’s preferred VW activities
and roles may allow for more accurate personalised ad placement.
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8. CONCLUSION

In this work, we introduced the novel task of virtual world (VW) role detection
and formalized the necessary steps to achieve it. Due to strong parallels to the
real world, virtual worlds can be used as a controlled test environment for our ap-
proaches. We employed techniques of information retrieval in the VW domain and
evaluated their performance based on a manually annotated corpus of VW chat
messages. With the resulting classification method, we were able to outperform
the baseline method, a state of the art text classification technique, at significance
level. Message grouping turned out to be an unambiguous task for human anno-
tators who showed good agreement rates. As we already anticipated earlier, this
task is not trivial for automatic systems and will remain a challenging problem to
dedicate further research to. Identifying activities and user roles based on chat
communication has been shown to be an area in which our automatic methods per-
form reliably. We closely approximated human performance while our approaches
consistently outperformed the text classification baseline.

Based on the positive recent development of the virtual world market and the
success of our applicability experiment we are convinced that role detection is a valu-
able research field of growing importance. Recent developments on the Massively
Multiplayer Online Games (MMOG) market show increasingly strong tendencies
towards the integration of social networking features into games. As we have seen
in other domains, the load of available additional information (e.g., friend rela-
tionships, notions of preference, content sharing, event organization, etc.) can be
exploited in multiple ways to achieve greater financial gains for VW providers but
also greater immersion and enjoyment for users. Although virtual worlds are cur-
rently lacking behind on-line social networks in terms of automatic analysis and
data mining features, they could aspire to drive the entire field because of their
close connection between (virtual) reality and ubiquitous means of communication
that, despite all advances in mobile telecommunication, are not yet present in the
real world. Further practical applications to be studied and evaluated include more
fine-grained means of automatic discourse understanding guided by user roles, au-
tomatic analyses of MMOG activity distributions as a means of evaluating the
community’s acceptance of novel game features, as well as confirming our findings
for alternative position-aware chat domains such as geo-tagged Twitter messages.
Future work will follow three major directions: (1) An in-depth exploration of
VW activities and roles will be conducted to reduce the still significant share of
conversations that could not be assigned a functional activity/role and therefore
currently ended up in the “other” category. While we acknowledge the presence of
non-VW chatter in the data, we believe that a more atomic definition of activities
and roles may serve to more clearly separate functional categories from noise. (2)
Text-based classification schemes in highly collaborative social media domains often
suffer from the multitude of languages used for communication. The same holds for
MMOGs. At this point, we disregarded any non-English message in order to not
obstruct the performance of term frequency-based methods. Future extensions on
this work will employ cross-language models to also benefit from non-English traces
of information. (3) Currently, the role detection scheme is exclusively based on com-
munication features. However, it is to be assumed that role affiliation is subject
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to the influence of several additional factors. For example, we can assume certain
role types to be observed together more frequently, thus, motivating an inspection
of the interrelationship between players in order to propagate prior probabilities of
role affiliation across networks built along friendships, guild memberships, or other
VW connections.
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