
Abbasi et al. Crit Care          (2020) 24:689  
https://doi.org/10.1186/s13054-020-03403-6

RESEARCH LETTER

Machine learning to predict hemorrhage 
and thrombosis during extracorporeal 
membrane oxygenation
Adeel Abbasi1, Yasmin Karasu2, Cindy Li2, Neel R. Sodha3, Carsten Eickhoff4,5 and Corey E. Ventetuolo1,6* 

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco 
mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Hemorrhage and thrombosis are major causes of morbid-
ity and mortality during extracorporeal membrane oxy-
genation (ECMO). Even in a controlled setting, bleeding 
occurs frequently—almost half (46%) of the patients ran-
domized to ECMO in the EOLIA trial had hemorrhage 
requiring transfusion [1]. The pathophysiology of these 
complications during ECMO is complex, dynamic and 
not fully understood [2]. This may explain why standard 
approaches to monitor coagulation are imperfect and 
studies that employ traditional biostatistical methods 
do not consistently identify common risk factors. We 
applied machine learning to an ECMO dataset to predict 
hemorrhage and thrombosis. Our hypothesis was that 
machine learning would accurately predict these events 
and identify novel factors not anticipated clinically or 
identified by traditional biostatistical methods.

We used a preexisting, manually extracted, adult ECMO 
dataset established to study anticoagulation practices and 
ECMO complications [3]. The dataset was first cleaned. 
Data were condensed to one row per patient. The mean 
and range were used to create new variables from con-
tinuous variables. Categorical variables were encoded as 
binary variables using one-hot encoding. Missingness was 
handled by first dropping variables’ missing values for all 
patients. Some missing data were recovered by reviewing 
the electronic health record. Seven variables were dropped 
to limit the potential of reverse causation artificially 

enhancing outcome prediction. Remaining variables still 
missing values (thromboelastography, anti-factor Xa lev-
els) were dropped. Hemorrhage was defined as bleeding 
during ECMO requiring a transfusion and/or intervention, 
thrombosis as deep vein thrombosis, pulmonary embolism, 
ischemic stroke during or following ECMO, or ECMO cir-
cuitry change.

The study cohort included 44 consecutive patients sup-
ported with ECMO. The average age was 42  years; 66% 
were men. The most common indication for ECMO was 
acute respiratory distress syndrome (59%), and 66% were 
supported with veno-venous ECMO. There were a total 
of 19 hemorrhage events, most commonly cannulation 
site bleeding (42%), and 16 thrombotic events, most com-
monly deep vein thrombosis (81%).

We compared chi-square to five supervised classifi-
cation and regression machine learning models: ran-
dom forest, recursive feature elimination, decision trees, 
k-nearest neighbors and logistic regression. Leave-one-
out cross-validation maximized the training cohort size, 
which allowed each patient to be used to train and test the 
models to minimize sample bias [4]. The models to pre-
dict hemorrhage performed better (accuracy of 58–80%) 
than the models for thrombosis (40–64%) (Fig. 1).

An ablation analysis ranked variables by importance to 
the model’s performance [5]. The rank lists for the ran-
dom forest model differed from that of the chi-square 
model (Table  1). As expected, anticoagulation monitor-
ing assays were most important in the chi-square model 
and the rank lists were identical for both outcomes. For 
the random forest model, the variables were more varied 
and included ECMO indications, cannulation strategies 
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and duration. Rank lists for the random forest model dif-
fered between the two outcomes and could not be antici-
pated based on clinical intuition alone (e.g., race, body 
mass index, indication). These observations demonstrate 
an advantage of machine learning in its capacity to meas-
ure the correlations between combinations of variables 
and the outcome rather than correlation between the 
variable and outcome alone.

This is the first time machine learning has been applied 
to predict ECMO complications. The decision tree model 
predicted hemorrhage with promising accuracy despite 
the small sample size. A larger dataset would allow the 
use of deep learning models to potentially improve per-
formance and validate our current models. Similar analy-
ses using traditional biostatistical methods are infeasible. 
Machine learning provides an unbiased, robust and auto-
mated approach to handle and process the volume and 
variety of data generated by the provision of ECMO 
in order to elucidate factors that contribute to ECMO 
complications.

Fig. 1 Performance of machine learning models. DT decision trees, 
kNN k-nearest neighbor, LR logistic regression, RF random forest, RFE 
recursive feature elimination

Table 1 Ten most important variables for model to predict outcomes

ECMO extracorporeal membrane oxygenation, PH pulmonary hypertension, PTT partial thromboplastin time, INR international normalized ratio

*p > 0.05, none of the individual features significantly contributed to the model’s performance

Random forest model* Chi-square model

Hemorrhage

 Heparin drip rate—maximum dosage Heparin drip rate—maximum dosage

 Heparin drip rate—mean dosage Heparin drip rate—mean dosage

 PTT—lowest value Heparin drip rate—minimum dosage

 Activated clotting time—highest value PTT—highest value

 Platelet count—highest value PTT—mean value

 Race PTT—lowest value

 ECMO configuration INR—highest value

 ECMO—double-lumen cannulation INR—mean value

 Drainage cannula size INR—lowest value

 Drainage cannula site Activated clotting time—highest value

Thrombosis

 ECMO—double-lumen cannulation Heparin drip rate—maximum dosage

 Platelet—lowest value Heparin drip rate—mean dosage

 Transfusion of cryoglobulin Heparin drip rate—minimum dosage

 Transfusion of platelets PTT—highest value

 Body mass index PTT—mean value

 Renal replacement therapy PTT—lowest value

 ECMO—duration INR—highest value

 ECMO indication—status asthmaticus INR—mean value

 ECMO indication—PH/right ventricular failure INR—lowest value

 Platelet count—mean value Activated clotting time—highest value
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