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Abstract 

Anginal symptoms can connote increased cardiac risk and a need for change in cardiovascular management. This                
study evaluated the potential to extract these symptoms from physician notes using the Bidirectional Encoder from                
Transformers language model fine-tuned on a domain-specific corpus. The history of present illness section of 459                
expert annotated primary care physician notes from consecutive patients referred for cardiac testing without known               
atherosclerotic cardiovascular disease were included. Notes were annotated for positive and negative mentions of              
chest pain and shortness of breath characterization. The results demonstrate high sensitivity and specificity for the                
detection of chest pain or discomfort, substernal chest pain, shortness of breath, and dyspnea on exertion. Small                 
sample size limited extracting factors related to provocation and palliation of chest pain. This study provides a                 
promising starting point for the natural language processing of physician notes to characterize clinically actionable               
anginal symptoms.  
 
Introduction 

Angina pectoris is a constellation of symptoms that portends inadequate oxygenation of cardiac muscle due to either                 
a decrease in coronary blood supply, an increase in myocardial oxygen demand, or both.​1 These symptoms are                 
classically described as substernal chest pain that worsens with exertion and improves with rest or administration of                 
nitroglycerin.​2 Concomitant shortness of breath is also frequently reported. The presence of anginal symptoms has               
been demonstrated to increase the likelihood of underlying atherosclerotic cardiovascular disease substantially and is              
a key input variable along with traditional cardiovascular risk factors in estimating patients’ pretest probability of                
coronary artery disease (CAD). This pretest probability, in turn, informs the appropriateness of providers’ referral of                
patients for cardiac testing to identify obstructive CAD.​3 The CAD Consortium Score is a commonly used tool to                  
estimate the pretest probability of CAD.​4 In this score, the presence of typical versus atypical anginal symptoms                 
connotes a more than three-fold increase in pre-test probability of CAD. 

While traditional cardiovascular risk factors (e.g., age, sex, race, hypertension, hyperlipidemia, diabetes, and             
smoking status) are generally available within the electronic health record (EHR) as structured data, angina               
symptoms are typically recorded as unstructured natural language free-text descriptions within physician notes.​5 A              
prior study found that chest pain history is recorded as structured International Classification of Disease (ICD) codes                 
in the EHR only half of the time.​6 This prevents symptoms from being incorporated into automated clinical decision                  
support systems, limits the evaluation of guideline adherence, and makes it difficult to do large scale research about                  
the prognostic ability of symptoms outside of clinical trials​4​ and natural language processing (NLP) challenges.​7 

Prior work to extract both anginal and other symptoms from clinician-written natural language has primarily utilized                
complex annotation procedures and specialized software requiring both clinical and linguistic expertise.​6,8–11 In             
addition, portability assessments outside of the environment in which these methods have been developed show               
performance reduction.​12 Challenges include the generalized detection of negation,​13 interpretation of time            
expression,​14 and retraining to account for institution-specific differences.​15 However, clinical note content            
documenting similar events exhibit important similarities that should enable the implementation of NLP tasks across               
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institutions.​12 The combination of significant upfront work to develop NLP tools and the likelihood that they will                 
require testing and retraining to be applied to new environments has made them impractical to implement.​16                
Therefore, it is necessary to explore methods that minimize the need for manual feature labeling by both clinical and                   
linguistic experts. 

Pre-trained transformer encoder architectures are large language models that address several of these shortcomings              
and have been shown to produce state-of-the-art results on NLP tasks.​17 Trained to perform language modeling (e.g.,                 
next word prediction) on large corpora of text, they extract contextual representations of words by considering all                 
words in the input sequence at once and selectively focusing on specific parts of their context, based on several                   
aspects such as syntactic structure and semantic similarity. Transformer encoders, which typically comprise             
hundreds of millions of parameters or more, can thus extract rich, general linguistic information from text and then                  
be fine-tuned to specific tasks, including sequence classification, requiring several orders of magnitude fewer data               
than would otherwise be needed to train a model from scratch. This study aimed to apply a pre-trained transformer                   
model for the task of angina symptom detection in clinical notes that were written by primary care physicians                  
referring patients for cardiac stress testing.​18 The specific publicly available pre-trained neural network was built on                
the Bidirectional Encoder Representation from Transformers (BERT) language model. It was first pre-trained for              
language modeling on a large-scale biomedical corpus and then on publicly available medical notes.​19,20 This study                
tested the hypothesis that such a language model can be fine-tuned on a small number of annotated physician notes                   
for the purpose of extracting clinically relevant symptom information associated with angina pectoris. 
 
Methods 

Patient Population 
Consecutive patients (n=459) without known CAD referred for cardiac testing by primary care physicians were               
included in the study cohort. This population was expected to be enriched for cardiovascular symptoms, including                
angina and anginal equivalents (e.g., dyspnea on exertion) as they are a common impetus for cardiac stress test                  
referral. Baseline cardiac risk factors were collected including demographics (e.g., age and sex, and race),               
comorbidities (e.g., diabetes), blood pressure (e.g., systolic and diastolic), medications (e.g., statins, aspirin, and              
anti-hypertension), and serum cholesterol (e.g., total and high-density lipoprotein). Patients with a known history of               
prior percutaneous coronary intervention or coronary artery bypass graft surgery were excluded. This study was               
approved by the Providence VA Medical Center Institutional Review Board. 
 
Angina Definitions 
Typical angina is pain or discomfort that is: (1) substernal (i.e., center of the chest), (2) provoked by exertion or                    
emotional stress, and (3) relieved by rest or nitroglycerin. The presence of two out of three of these symptoms                   
constitutes atypical angina, and pain is considered nonanginal when it only meets a single criterion.​21 The category                 
of nonanginal pain for the purpose of risk estimation has been broadened clinically to include other non-specific                 
symptoms of potential cardiac origin including vague chest discomfort, shortness of breath, and dyspnea on               
exertion.​3  
 
Manual Note Annotation 
Medical notes are routinely organized into sections that indicate expected content. Clinical symptoms can most               
frequently be found in the history of present illness (HPI), review of systems (ROS), or assessment/plan (A/P). This                  
study focused on the HPI section, which represents the interval medical history as expressed by the patient and                  
distilled by the note writer. For each patient in the study cohort, the primary care note most proximal to the cardiac                     
stress test order date was identified using the VA’s Computerized Patient Record System, and the relevant sections                 
were extracted. HPI sections were selected as one single continuous portion of text from within the note, the                  
beginning of which was usually indicated by a section header (e.g., "HPI" or "Subjective") and the end of which was                    
indicated by the start of another note section (e.g., "Medications" or "Objective").  
 
Study data were collected and managed using instruments implemented in the Research Electronic Data Capture               
(REDCap) tool.​22,23 HPIs were stored in free text fields and reviewed from within REDCap. Each HPI was annotated                  
using symptom fields regarding the positive, negative, or absent mention of (1) chest pain or discomfort, (2)                 
substernal chest pain, (3) chest pain provoked by exertion or emotional stress, (4) chest pain relieved by rest or                   
nitroglycerin, (5) shortness of breath, and (6) dyspnea on exertion (​Table 1)​. The definition of ‘substernal’ was                 
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broadened from the original Diamond and Forrester description​21 to include imprecise anatomical descriptions that              
are colloquially meant as substernal or for all practical purposes are more likely than not a description of substernal                   
pain or discomfort. This includes left-sided, left anterior, and descriptions of heaviness, tightness, heartburn, and               
precordial pain. Definitions of exertion included almost any association of the pain with a description of the activity.                  
Two examples that were deemed not enough activity to warrant exertion were "with standing" and "while washing                 
the dishes." The emotional stress criteria were considered met with the direct connection made between anxiety or                 
an emotionally stressful event to the onset of chest pain at the same time. A patient who generally reported being                    
anxious or under a lot of stress (e.g., family, job, or homelessness) but did not make the explicit link to chest pain                      
symptoms was not annotated as having emotional stress-induced chest pain. 
 
Table 1. ​Annotation Guidelines 
 

Symptom Positive Examples Negative Examples Ambiguous Cases 

Chest Pain or 
Discomfort 

Chest: pain, pressure, tightness, 
ache, discomfort, heaviness, 

sitting on, burning, something 
"not quite right" 

 
Described as: sharp, dull, 

severe, mild, stabbing 
 

Acronyms: cp, sscp 

any negation of a positive 

"The patient has had two 
episodes of chest pain in the past 
month. Patient denies chest pain 

today." → positive 

Substernal CP 

CP location: substernal, sternal, 
central, center, middle, left, 

anterior, precordial, epigastric, 
across 

 
CP quality that implies location: 
pressure, tightness, heaviness, 
sitting on, radiates to the left 

arm/shoulder 
 

Acronyms: sscp, ssc, ss, l, l ant 

right anterior, right, another 
body part only (shoulder, neck, 

arm, jaw, leg) 
 

CP Provoked by 
Exertion or 
Emotional Stress 

Provocation: exertion, stress, 
walking, running, stairs, 

shoveling, mowing lawn, not 
specifically deemed "negative" 

(w/out, w. out, without) 
"positive" 

OR 
(at/while) rest, laying down, 
night, sitting, standing up, 

washing dishes 

"with rest and exertion"  
→ positive 

CP Relieved by Rest 
or Nitroglycerin 

Palliation: rest, stopping, sitting, 
laying down, taking a few 

breaths 

"positive" with time modifier 
that is excessively long (e.g. > 

1hr) 

"relieved by rest or continuing 
to walk" → positive 

Shortness of Breath 

Synonyms: shortness of breath, 
sob, dyspnea, any mention of 

breathing difficulty 
 

Acronym: sob 

any negation of a positive  

Dyspnea on Exertion 
Defined with respect to dyspnea as exertional chest pain is defined with respect to chest pain. 

 
Acronym: doe 

CP – Chest Pain 
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It was not uncommon for there to be internal inconsistencies within a single note for these categories. For example,                   
the HPI may state that a patient experienced exertional chest pain symptoms recently but then go on to state that the                     
patient had no chest pain at the time of the visit. Similarly, patients sometimes report that pain occurs both at rest                     
and with exertion. Cases with both a positive and negative mention of a label were considered positive mentions                  
unless the positive case was stated to have been resolved for a clearly explained reason. It took an average of two                     
minutes to annotate each HPI for these symptoms. All annotations were performed by [ASE] and then reviewed by                  
[NRS]. Disagreements were adjudicated between the two annotators with the help of [INS]. The final reference                
standard was the result of a consensus between the three coders. 
 
Transfer Learning with Clinical BERT 
BioBERT is a language representation model trained on both general (Wikipedia and BooksCorpus) and              
domain-specific (PubMed Abstracts and PMC Full-text articles) text.​24 The model has been fine-tuned on a language                
modeling task using discharge summaries from the Beth Israel Deaconess Medical Center Medical Information Mart               
for Intensive Care III database (MIMIC III). Bio+Discharge Summary BERT is publicly available within the Python                
HuggingFace transformers library as part of the BertForSequencClassification transformer class.​19,25 Bio+Discharge           
Summary BERT was chosen as a domain-appropriate language model for the downstream task of detecting anginal                
symptoms, which was cast as a classification task. 
 
HPI text from each primary care note was embedded using Bio+Discharge Summary BERT. Each embedding was                
prepended with a [CLS] and padded with [PAD] tokens until reaching 512 total tokens, the maximum allowed by                  
BERT models. Attention masks were constructed to enable batch processing of sequences by identifying which               
tokens should be attended to and which should be ignored as padding. Separate models were constructed to identify                  
each of the six symptoms. Models were configured to identify three classes including positive, negative, and absent                 
mentions of the symptom. The training was performed over 2, 4, 8, 16, 32, 64, and 128 epochs with a batch size of                       
8. The batch size was selected as the maximum number of 512 token embeddings that can be processed on one 12                     
GB GPU at a time. Data was split into training, validation, and testing sets (80/10/10) and then cross-validated                  
ten-fold such that all data was represented in a collective validation and a testing set exactly once each. Matthews                   
Correlation Coefficient (MCC) was calculated on pooled validation sets and plotted versus the number of training                
epochs for each symptom. The number of training epochs corresponding to the maximum of each of these curves                  
was selected as the number of epochs to be used for reporting aggregate performance on the test set. 
 
Evaluation 
For each model, we reported the aggregate performance on the test set, after previously optimizing the number of                  
training epochs based on aggregate performance on the validation set. 

In order to assess the performance of detecting the positive presence of symptoms within the notes, the confusion                  
matrices for each symptom were reduced to two-by-two such that the absent and negative classes were collapsed                 
into a single class. Precision, recall, F​1​-score, specificity, and Matthews Correlation Coefficient (MCC) were              
calculated. MCC was chosen in addition to the other information retrieval evaluation metrics that are not informed                 
by true negative cases.​26 This was accomplished by balancing the ratios of the four quadrants of the binary confusion                   
matrix (i.e., true positives, false positives, true negatives, and false negatives). 

Computational Resources 
This research was conducted using computational resources and services at the Center for Computation and               
Visualization at Brown University. 12GB NVIDIA GeForce Titan V and Tesla P100 GPUs were used for                
computation. Each epoch had a runtime of approximately 17-26 seconds (Titan vs P100 respectively) for a total of                  
between 2.5 minutes to 18 minutes to fine-tune one model on the Titan V (8 and 64 epochs respectively). 
 
Results 

Patient Characteristics 
After annotation of HPIs extracted from 459 consecutive patients without known CAD referred for cardiac testing                
by primary care physicians, 243 patients were noted to be experiencing chest pain and 205 were noted to be                   
experiencing shortness of breath (SOB). Baseline clinical characteristics are reported by chest pain class (​Table 2)​.  
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The median age of all patients was 66 years [57-71]. Patients were predominantly male (92%) and self-identified as                  
white race (88%). Thirty percent had a history of diabetes. About half of the patients were on statin (58%), aspirin                    
(44%), or antihypertensive (58%) therapies. Ten-year pooled cohort equation risk of developing atherosclerotic             
cardiovascular disease based on traditional risk factors was 18.1% (9.9-27.8).​5 
 
Table 2.​ Patient Characteristics 
 

Characteristic All 
(N = 459) 

Typical  
Chest Pain 

(N = 24) 

Atypical  
Chest Pain 

(N = 73] 

Non-Specific 
Symptoms 
(N = 255) 

Asymptomatic 
(N = 107) 

Age (years) 66 [57-71] 66.5 [57.5-71] 62 [54-71] 66 [59-70] 65 [58-71] 

Sex (male) 423 (92%) 24 (100%) 65 (89%) 231 (91%) 103 (96%) 

Race (white) 406 (88%) 22 (92%) 64 (88%) 230 (90%) 90 (84%) 

Diabetes 137 (30%) 9 (38%) 16 (22%) 78 (31%) 34 (32%) 

Smoker (current) 94 (20%) 3 (13%) 15 (21%) 51 (20%) 25 (23%) 

SBP (mmHg) 132 [124-141] 130 [121.8-141] 129 [121-140] 132 [124-141] 132 [124-142] 

DBP (mmHg) 78 [73-82] 76 [74-82.3] 76 [70-83] 78 [73-82] 78 [74-82] 

Cholesterol  

    Total (mg/dL) 179 [153-213] 191 [159-216.5] 179 [153-227] 181 [153-212] 177 [147.5-206.5] 

    HDL (mg/DL) 44 [37-54] 44 [39.5-47.5] 46 [37-53] 45 [37-54] 43 [38-50.5] 

Chest Pain 243 (53%) 24 (100%) 73 (100%) 146 (57%) – 

    Substernal 179 (39%) 24 (100%) 65 (89%) 90 (35%) – 

    Exertional 108 (24%) 24 (100%) 65 (89%) 7 (19%) – 

    Improves with Rest 42 (9%) 24 (100%) 16 (22%) 2 (1%) – 

Shortness of Breath 205 (45%) 16 (67%) 35 (48%) 154 (60%) – 

    Exertional 155 (34%) 16 (67%) 29 (40%) 110 (43%) – 

Pharmacotherapy  

    Statin Therapy 265 (58%) 12 (50%) 43 (59%) 149 (58%) 61 (57%) 

        ​High intensity 121 (26%) 7 (29%) 21 (29%) 67 (26%) 26 (24%) 

        ​Moderate intensity 134 (29%) 5 (21%) 20 (27%) 77 (30%) 32 (30%) 

        ​Low intensity 10 (2%) – 2 (3%) 5 (2%) 3 (3%) 

    Aspirin 201 (44%) 11 (46%) 28 (38%) 112 (44%) 50 (47%) 

    Anti-HTN 264 (58%) 13 (54%) 33 (45%) 146 (57%) 72 (67%) 

Cardiovascular Risk  

    10-Year ASCVD Risk​5 18.1% [9.9-27.8] 20.9% [9.1-27.9] 14.3 [7.5-22.8] 18.4 [10.7-28.0] 20.5% [9.9-28.6] 

    CAD Consortium  
    Pretest Probability​4      

        ​High – – – – – 

        ​Moderate 389 (85%) 22 (92%) 58 (79%) 214 (84%) 95 (89%) 

        ​Low 70 (15%) 2 (8%) 15 (21%) 41 (16%) 12 (11%) 
SBP ​– systolic blood pressure, ​DBP​ – diastolic blood pressure, ​HDL​ – high-density lipoprotein, ​HTN ​– hypertension,  
ASCVD​ – atherosclerotic cardiovascular disease, ​CAD​ - coronary artery disease 
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Note Annotations 
Notes were annotated for chest pain and shortness of breath symptoms. The majority of HPIs contained information                 
about chest pain (77%) and shortness of breath (64%). Of the notes that contained positive mentions of chest pain,                   
three quarters mentioned pain location while a minority described pain provocation (34%) or palliation (12%).               
Positive or negative mentions of shortness of breath were in 64% of HPIs, more than half of which specifically                   
mentioned the presence or absence of exertional symptoms. Overall, there were three times as many positive as                 
negative symptom mentions. 
 
Despite the classification of distinct presence and absence of symptoms, clinical documentation of anginal              
symptoms often described complex narratives that required interpretation in order to be correctly classified. One               
example of this was a patient whose chest heaviness and shortness of breath had been linked to the non-cardiac                   
source of mold exposure and since moving apartments, the patient reports the chest heaviness as being fully resolved                  
and shortness of breath improving. In this case, the note would be correctly classified as negative for substernal                  
chest pain and positive for shortness of breath. However, a prior note (not part of this study) that hypothesized mold                    
as a potential cause of the patient's symptoms would be considered positive for both. The final model classified the                   
patient as being positive for both symptoms (correct for shortness of breath and incorrect for substernal chest pain). 
 
Anginal Symptom Extraction 
Embedded HPI sections were truncated to BERT's 512 token limit. The majority of tokenized notes fit within the                  
limit resulting in only 3.3% (n = 16) being truncated. A Chi-Square test demonstrated that the frequency of positive                   
symptoms within the truncated samples was in line with the overall dataset (p = 0.95). 
 

 
Figure 1.​ Validation Set Epoch Number Selection 
Individual models for each symptom: (a) chest pain or discomfort, (b) substernal chest pain, (c) chest pain provoked                  
by exertion or emotional stress, (d) chest pain relieved by rest or nitroglycerin, (e) shortness of breath, and (f)                   
dyspnea on exertion, were trained using a range of epochs. Model performance (Matthews Correlation Coefficient)               
was evaluated as a function of epochs. The best performing number of epochs for each symptom was selected as the                    
final model parameter for evaluation on held-out testing data. 
 
BioBERT+Discharge Summary models were each fine-tuned to detect one of six different anginal symptoms using               
the labeled embedded HPI sections. The epoch number parameter was determined using an aggregated validation               
set. The graphs in ​Figure 1 were inspected visually to determine the best early stopping parameter for each                  

 



symptom. Parameter selection was straightforward given the limited number of epochs tested and the absence of                
local maximums observed. The chosen epoch number parameter was then used to test combined held-out test data                 
from each of the ten cross-folds. 
 
The final raw model performance is presented in a three-by-three confusion matrix for each symptom (​Table 3​).                 
These include predicted annotation of absent, positive, and negative symptom mentions versus consensus manual              
annotation. For chest pain, the sequence classification model most common errors included negative identification              
of chest pain when it was absent (n = 14) and positive identification of chest pain when it was negative (n = 10).                       
Negative assertions of chest pain characterization variables were under classified by the models. False positives of                
dyspnea on exertion were the most common breathing-related misclassification (n = 38). 
 
Table 3. ​Confusion Matrix of Symptoms within HPI 
 

 Adjudicated Manual Annotation 

 

 Absent + – Absent + – Absent + – 

 Chest Pain SS CP EX CP 

Absent 90 4 1 223 26 4 274 47 23 

+ 8 226 10 39 152 5 30 59 22 

– 14 9 97 0 0 0 0 2 2 

 RE CP SOB DOE 

Absent 389 29 12 136 7 2 245 14 6 

+ 8 12 2 18 186 11 38 137 6 

– 5 1 1 12 12 75 7 3 3 

 SS CP ​ – substernal chest pain, ​ ​EX​ ​CP ​ – exercise/stress-induced chest pain,  
 ​RE CP​ ​ – chest pain improves with rest or nitroglycerin, ​ SOB ​ – shortness of breath, ​ ​DOE ​ – dyspnea on exertion 
 
The confusion matrices were reduced to two-by-two tables where "Absent" and "​–​" assertions were collapsed into a                 
single category to evaluate the model's performance to detect the presence or absence of symptom documentation.                
Precision, recall, F1, specificity, and Matthews Correlation Coefficient were calculated for each symptom and are               
reported in ​Table 4​. Chest pain was extracted better than any other symptom (F1 = 0.936, MCC = 0.865). Chest pain                     
subtype extraction performance ranged from good (substernal) to poor (improved with rest). Shortness of breath and                
dyspnea on exertion were extracted with good performance (F1 = 0.829, MCC = 0.695 and F1 = 0.818, MCC =                    
0.720 respectively). 
 
Table 4.​ Model Evaluation Statistics 
 

 Chest Pain SS CP EX CP RE CP SOB DOE 

Precision 0.926 0.776 0.532 0.545 0.865 0.757 

Recall/Sensitivity 0.946 0.854 0.546 0.286 0.907 0.890 

F​1 0.936 0.812 0.539 0.375 0.886 0.818 

Specificity 0.918 0.843 0.852 0.976 0.886 0.856 

MCC 0.865 0.690 0.394 0.353 0.790 0.720 

Training Epochs 32 16 8 16 64 64 

 SS CP ​ – substernal chest pain, ​ ​EX​ ​CP ​ - exercise/stress-induced chest pain,  
 ​RE CP​ ​ – chest pain improves with rest/nitroglycerin, ​ SOB ​ – shortness of breath, ​ ​DOE ​ – dyspnea on exertion 
MCC – Matthews Correlation Coefficient 
 

 



Discussion 

This study examined the potential to use a pre-trained transformer architecture to extract anginal symptom               
information from clinical notes.​11 A publicly available BioBERT+Discharge language model was fine-tuned using             
HPI sections from 459 consecutive patients referred for cardiac testing. The models detected mention of chest pain                 
with greater than 90 percent sensitivity and specificity. Chest pain location, shortness of breath, and dyspnea on                 
exertion were similarly extracted with high sensitivity and specificity. These represent excellent starting points for               
the characterization of anginal symptoms from clinical notes of patients referred for cardiac testing. 

Prior literature on the extraction of symptom information from clinical notes is sparse. A recent systematic review                 
identified 27 articles related to use of NLP for clinical symptom detection and noted that study reproducibility is                  
overall poor due to: (1) lack of detail about the patient population, (2) failure to report detailed performance, and (3)                    
poorly described NLP methodology.​11 One study extracted chest pain and dyspnea symptoms with reported              
sensitivity on a small subset of their data, similar to the performance reported here.​9 However, no additional metrics,                  
including false-positive rates, were provided for comparison, and methods lack details that would enable the system                
to be reproduced or implemented. 

The performance of NLP systems to extract the provocation and palliation of chest pain has not been previously                  
reported. The presented results indicate that the granular characterization of chest pain symptoms can be ruled out                 
with high specificity. Reliable detection of these features requires additional consideration. The strength of the note                
for documentation is that it allows the clinician freedom to express complexity, ambiguity, and uncertainty of how                 
symptoms are experienced and remembered. This leads to significant variability in how patient symptoms are               
ultimately documented. For example, it is useful to document that a patient has both experienced chest pain in the                   
recent past and is pain-free at the time of the clinical encounter. However, these seemingly contradictory statements                 
may be a challenge for a general language model attempting to determine if a patient has experienced chest pain at                    
all. In addition, through the annotation process, it became clear that there is a wide range of ways that patients                    
report, and clinicians document provocation and palliation of chest pain. 

Fractional withholding of training data for both chest pain and substernal models indicate that performance is                
strongly related to the number of positive examples. Training models for these two symptoms with a comparable                 
number of positive examples as the results reported for provocation and palliation of symptoms indicate similar                
performance. A small sample size for the provocation and palliation descriptions combined with narrative              
complexity is likely responsible for low sensitivity. Based on these findings, performance appears to plateau               
between 200 and 250 positive examples which may represent the necessary number to encompass the semantic                
variability of how chest pain is documented within the studied population. 

The six classification objectives (i.e., angina symptoms) are not independent. Therefore, instead of training separate               
models for predicting each independently, it is possible to train a model that jointly predicts all objectives. Not only                   
would deploying and maintaining a single model instead of six be more practical but this approach, known as                  
multi-task learning, also offers theoretical benefits, such as the regularization of model weights.​27,28 The multi-task               
model shares the same architecture as the task-specific models, but with six distinct output layers instead of only                  
one. The loss to be minimized during training is a weighted average of the six component losses. The multi-task                   
model showed inferior predictive performance compared to the task-specific models. The potential reasons for these               
findings include: (a) the difficulty in stratifying the small training and test sets across 10 cross-validation folds in a                   
way that preserves class balances and (b) the well-documented sensitivity of training to the weights of the individual                  
tasks.​29 

Identifying clinically actionable anginal symptoms was the focus of this study. The developed models were designed                
to answer questions about patients that aid in the diagnosis​21 and determine the pretest probability​4 of coronary artery                  
disease. Automating the extraction of anginal symptom information as presented in this study is potentially               
deployable as part of clinical decision support systems. It would enable health system-wide identification of               
high-risk patients and coordinate diagnostic cardiac testing for symptomatic ones.​3 In addition, automated symptom              
extraction is required for research on the relationship between anginal symptoms and downstream clinical testing               
(e.g., catheterization with and without percutaneous coronary intervention, coronary artery bypass graft surgery) and              
outcomes (e.g., myocardial infarction, cardiac death, and all-cause mortality). 
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Several limitations deserve mention that would need to be addressed for this work to be applied in a production                   
environment. The process of identifying appropriate clinical notes for symptom extraction was performed manually              
and relies on institution-dependent EHR knowledge, including note types and physician relationship to the patient               
(e.g., primary care). In addition, relevant note section identification was also performed manually. This has been                
previously automated using institution-specific template headers,​30 and the authors are currently working on a              
generalizable solution to this problem. Finally, the transferability of these models to other clinical contexts and                
healthcare systems needs to be evaluated. 
 
Conclusion 

This study presents a promising method for detecting anginal and anginal-equivalent symptoms from clinical texts               
using pre-trained transformer architectures. The findings demonstrate that a generalized language model can be              
fine-tuned on a limited set of annotated physician notes to enable the extraction of clinically actionable anginal                 
symptoms. The extracted symptoms align with data inputs for validated risk models and clinical guidelines and may                 
allow the development of automated decision support and quality assessment. Additional work is required to assess                
the additional fine-tuning needed to apply these models in other clinical settings. 
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